Properties

Label 8.0.3178140625.1
Degree $8$
Signature $[0, 4]$
Discriminant $3178140625$
Root discriminant \(15.41\)
Ramified primes $5,11,41$
Class number $2$
Class group [2]
Galois group $C_2^3: C_4$ (as 8T20)

Related objects

Downloads

Learn more

Show commands: Magma / Oscar / PariGP / SageMath

Normalized defining polynomial

sage: x = polygen(QQ); K.<a> = NumberField(x^8 - 3*x^7 - 6*x^6 + 33*x^5 + 51*x^4 - 125*x^3 - 80*x^2 + 505*x + 655)
 
gp: K = bnfinit(y^8 - 3*y^7 - 6*y^6 + 33*y^5 + 51*y^4 - 125*y^3 - 80*y^2 + 505*y + 655, 1)
 
magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(x^8 - 3*x^7 - 6*x^6 + 33*x^5 + 51*x^4 - 125*x^3 - 80*x^2 + 505*x + 655);
 
oscar: Qx, x = PolynomialRing(QQ); K, a = NumberField(x^8 - 3*x^7 - 6*x^6 + 33*x^5 + 51*x^4 - 125*x^3 - 80*x^2 + 505*x + 655)
 

\( x^{8} - 3x^{7} - 6x^{6} + 33x^{5} + 51x^{4} - 125x^{3} - 80x^{2} + 505x + 655 \) Copy content Toggle raw display

sage: K.defining_polynomial()
 
gp: K.pol
 
magma: DefiningPolynomial(K);
 
oscar: defining_polynomial(K)
 

Invariants

Degree:  $8$
sage: K.degree()
 
gp: poldegree(K.pol)
 
magma: Degree(K);
 
oscar: degree(K)
 
Signature:  $[0, 4]$
sage: K.signature()
 
gp: K.sign
 
magma: Signature(K);
 
oscar: signature(K)
 
Discriminant:   \(3178140625\) \(\medspace = 5^{6}\cdot 11^{2}\cdot 41^{2}\) Copy content Toggle raw display
sage: K.disc()
 
gp: K.disc
 
magma: OK := Integers(K); Discriminant(OK);
 
oscar: OK = ring_of_integers(K); discriminant(OK)
 
Root discriminant:  \(15.41\)
sage: (K.disc().abs())^(1./K.degree())
 
gp: abs(K.disc)^(1/poldegree(K.pol))
 
magma: Abs(Discriminant(OK))^(1/Degree(K));
 
oscar: (1.0 * dK)^(1/degree(K))
 
Galois root discriminant:  $5^{3/4}11^{1/2}41^{1/2}\approx 71.0093887402365$
Ramified primes:   \(5\), \(11\), \(41\) Copy content Toggle raw display
sage: K.disc().support()
 
gp: factor(abs(K.disc))[,1]~
 
magma: PrimeDivisors(Discriminant(OK));
 
oscar: prime_divisors(discriminant((OK)))
 
Discriminant root field:  \(\Q\)
$\card{ \Aut(K/\Q) }$:  $2$
sage: K.automorphisms()
 
magma: Automorphisms(K);
 
oscar: automorphisms(K)
 
This field is not Galois over $\Q$.
This is not a CM field.

Integral basis (with respect to field generator \(a\))

$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $\frac{1}{20593529}a^{7}+\frac{9044106}{20593529}a^{6}+\frac{10172339}{20593529}a^{5}+\frac{5311094}{20593529}a^{4}-\frac{5037797}{20593529}a^{3}-\frac{5423129}{20593529}a^{2}-\frac{8900189}{20593529}a-\frac{2543803}{20593529}$ Copy content Toggle raw display

sage: K.integral_basis()
 
gp: K.zk
 
magma: IntegralBasis(K);
 
oscar: basis(OK)
 

Monogenic:  Not computed
Index:  $1$
Inessential primes:  None

Class group and class number

$C_{2}$, which has order $2$

sage: K.class_group().invariants()
 
gp: K.clgp
 
magma: ClassGroup(K);
 
oscar: class_group(K)
 

Unit group

sage: UK = K.unit_group()
 
magma: UK, fUK := UnitGroup(K);
 
oscar: UK, fUK = unit_group(OK)
 
Rank:  $3$
sage: UK.rank()
 
gp: K.fu
 
magma: UnitRank(K);
 
oscar: rank(UK)
 
Torsion generator:   \( -\frac{151683}{20593529} a^{7} + \frac{803937}{20593529} a^{6} - \frac{736212}{20593529} a^{5} - \frac{4410251}{20593529} a^{4} + \frac{4675277}{20593529} a^{3} + \frac{8553731}{20593529} a^{2} - \frac{22019037}{20593529} a - \frac{9282424}{20593529} \)  (order $10$) Copy content Toggle raw display
sage: UK.torsion_generator()
 
gp: K.tu[2]
 
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
 
oscar: torsion_units_generator(OK)
 
Fundamental units:   $\frac{382820}{20593529}a^{7}-\frac{1810676}{20593529}a^{6}+\frac{262667}{20593529}a^{5}+\frac{14480439}{20593529}a^{4}-\frac{6050219}{20593529}a^{3}-\frac{48585290}{20593529}a^{2}+\frac{49613599}{20593529}a+\frac{111102537}{20593529}$, $\frac{221462}{20593529}a^{7}-\frac{827568}{20593529}a^{6}-\frac{1378279}{20593529}a^{5}+\frac{6090593}{20593529}a^{4}+\frac{15021419}{20593529}a^{3}-\frac{22976847}{20593529}a^{2}-\frac{88182786}{20593529}a-\frac{81494778}{20593529}$, $\frac{656610}{20593529}a^{7}-\frac{2549425}{20593529}a^{6}-\frac{4498012}{20593529}a^{5}+\frac{29824009}{20593529}a^{4}+\frac{8894513}{20593529}a^{3}-\frac{115413887}{20593529}a^{2}+\frac{37373272}{20593529}a+\frac{342958766}{20593529}$ Copy content Toggle raw display
sage: UK.fundamental_units()
 
gp: K.fu
 
magma: [K|fUK(g): g in Generators(UK)];
 
oscar: [K(fUK(a)) for a in gens(UK)]
 
Regulator:  \( 82.966822886 \)
sage: K.regulator()
 
gp: K.reg
 
magma: Regulator(K);
 
oscar: regulator(K)
 

Class number formula

\[ \begin{aligned}\lim_{s\to 1} (s-1)\zeta_K(s) =\mathstrut & \frac{2^{r_1}\cdot (2\pi)^{r_2}\cdot R\cdot h}{w\cdot\sqrt{|D|}}\cr \approx\mathstrut &\frac{2^{0}\cdot(2\pi)^{4}\cdot 82.966822886 \cdot 2}{10\cdot\sqrt{3178140625}}\cr\approx \mathstrut & 0.45874080657 \end{aligned}\]

# self-contained SageMath code snippet to compute the analytic class number formula
 
x = polygen(QQ); K.<a> = NumberField(x^8 - 3*x^7 - 6*x^6 + 33*x^5 + 51*x^4 - 125*x^3 - 80*x^2 + 505*x + 655)
 
DK = K.disc(); r1,r2 = K.signature(); RK = K.regulator(); RR = RK.parent()
 
hK = K.class_number(); wK = K.unit_group().torsion_generator().order();
 
2^r1 * (2*RR(pi))^r2 * RK * hK / (wK * RR(sqrt(abs(DK))))
 
# self-contained Pari/GP code snippet to compute the analytic class number formula
 
K = bnfinit(x^8 - 3*x^7 - 6*x^6 + 33*x^5 + 51*x^4 - 125*x^3 - 80*x^2 + 505*x + 655, 1);
 
[polcoeff (lfunrootres (lfuncreate (K))[1][1][2], -1), 2^K.r1 * (2*Pi)^K.r2 * K.reg * K.no / (K.tu[1] * sqrt (abs (K.disc)))]
 
/* self-contained Magma code snippet to compute the analytic class number formula */
 
Qx<x> := PolynomialRing(QQ); K<a> := NumberField(x^8 - 3*x^7 - 6*x^6 + 33*x^5 + 51*x^4 - 125*x^3 - 80*x^2 + 505*x + 655);
 
OK := Integers(K); DK := Discriminant(OK);
 
UK, fUK := UnitGroup(OK); clK, fclK := ClassGroup(OK);
 
r1,r2 := Signature(K); RK := Regulator(K); RR := Parent(RK);
 
hK := #clK; wK := #TorsionSubgroup(UK);
 
2^r1 * (2*Pi(RR))^r2 * RK * hK / (wK * Sqrt(RR!Abs(DK)));
 
# self-contained Oscar code snippet to compute the analytic class number formula
 
Qx, x = PolynomialRing(QQ); K, a = NumberField(x^8 - 3*x^7 - 6*x^6 + 33*x^5 + 51*x^4 - 125*x^3 - 80*x^2 + 505*x + 655);
 
OK = ring_of_integers(K); DK = discriminant(OK);
 
UK, fUK = unit_group(OK); clK, fclK = class_group(OK);
 
r1,r2 = signature(K); RK = regulator(K); RR = parent(RK);
 
hK = order(clK); wK = torsion_units_order(K);
 
2^r1 * (2*pi)^r2 * RK * hK / (wK * sqrt(RR(abs(DK))))
 

Galois group

$C_2^3:C_4$ (as 8T20):

sage: K.galois_group(type='pari')
 
gp: polgalois(K.pol)
 
magma: G = GaloisGroup(K);
 
oscar: G, Gtx = galois_group(K); G, transitive_group_identification(G)
 
A solvable group of order 32
The 11 conjugacy class representatives for $C_2^3: C_4$
Character table for $C_2^3: C_4$

Intermediate fields

\(\Q(\sqrt{5}) \), \(\Q(\zeta_{5})\)

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

sage: K.subfields()[1:-1]
 
gp: L = nfsubfields(K); L[2..length(b)]
 
magma: L := Subfields(K); L[2..#L];
 
oscar: subfields(K)[2:end-1]
 

Sibling fields

Galois closure: data not computed
Degree 8 siblings: data not computed
Degree 16 siblings: data not computed
Minimal sibling: 8.4.25857479250625.2

Frobenius cycle types

$p$ $2$ $3$ $5$ $7$ $11$ $13$ $17$ $19$ $23$ $29$ $31$ $37$ $41$ $43$ $47$ $53$ $59$
Cycle type ${\href{/padicField/2.4.0.1}{4} }^{2}$ ${\href{/padicField/3.4.0.1}{4} }^{2}$ R ${\href{/padicField/7.4.0.1}{4} }^{2}$ R ${\href{/padicField/13.4.0.1}{4} }^{2}$ ${\href{/padicField/17.4.0.1}{4} }^{2}$ ${\href{/padicField/19.4.0.1}{4} }^{2}$ ${\href{/padicField/23.4.0.1}{4} }^{2}$ ${\href{/padicField/29.4.0.1}{4} }^{2}$ ${\href{/padicField/31.2.0.1}{2} }^{2}{,}\,{\href{/padicField/31.1.0.1}{1} }^{4}$ ${\href{/padicField/37.4.0.1}{4} }^{2}$ R ${\href{/padicField/43.4.0.1}{4} }^{2}$ ${\href{/padicField/47.4.0.1}{4} }^{2}$ ${\href{/padicField/53.4.0.1}{4} }^{2}$ ${\href{/padicField/59.2.0.1}{2} }^{4}$

In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.

# to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7$ in Sage:
 
p = 7; [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]
 
\\ to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7$ in Pari:
 
p = 7; pfac = idealprimedec(K, p); vector(length(pfac), j, [pfac[j][3], pfac[j][4]])
 
// to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7 in Magma:
 
p := 7; [<pr[2], Valuation(Norm(pr[1]), p)> : pr in Factorization(p*Integers(K))];
 
# to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7$ in Oscar:
 
p = 7; pfac = factor(ideal(ring_of_integers(K), p)); [(e, valuation(norm(pr),p)) for (pr,e) in pfac]
 

Local algebras for ramified primes

$p$LabelPolynomial $e$ $f$ $c$ Galois group Slope content
\(5\) Copy content Toggle raw display 5.4.3.2$x^{4} + 5$$4$$1$$3$$C_4$$[\ ]_{4}$
5.4.3.2$x^{4} + 5$$4$$1$$3$$C_4$$[\ ]_{4}$
\(11\) Copy content Toggle raw display $\Q_{11}$$x + 9$$1$$1$$0$Trivial$[\ ]$
$\Q_{11}$$x + 9$$1$$1$$0$Trivial$[\ ]$
11.2.0.1$x^{2} + 7 x + 2$$1$$2$$0$$C_2$$[\ ]^{2}$
11.2.1.1$x^{2} + 22$$2$$1$$1$$C_2$$[\ ]_{2}$
11.2.1.2$x^{2} + 11$$2$$1$$1$$C_2$$[\ ]_{2}$
\(41\) Copy content Toggle raw display 41.2.0.1$x^{2} + 38 x + 6$$1$$2$$0$$C_2$$[\ ]^{2}$
41.2.0.1$x^{2} + 38 x + 6$$1$$2$$0$$C_2$$[\ ]^{2}$
41.2.1.2$x^{2} + 123$$2$$1$$1$$C_2$$[\ ]_{2}$
41.2.1.2$x^{2} + 123$$2$$1$$1$$C_2$$[\ ]_{2}$