Normalized defining polynomial
\( x^{8} - 4 x^{7} + 16 x^{6} - 26 x^{5} + 35 x^{4} - 2 x^{3} - 2 x^{2} + 32 x + 13 \)
Invariants
| Degree: | $8$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 4]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(3105609984=2^{8}\cdot 3^{8}\cdot 43^{2}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $15.36$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 3, 43$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $\frac{1}{3} a^{4} + \frac{1}{3} a^{3} - \frac{1}{3} a - \frac{1}{3}$, $\frac{1}{3} a^{5} - \frac{1}{3} a^{3} - \frac{1}{3} a^{2} + \frac{1}{3}$, $\frac{1}{9} a^{6} + \frac{1}{9} a^{5} - \frac{1}{9} a^{4} + \frac{1}{9} a^{3} + \frac{2}{9} a^{2} - \frac{2}{9} a - \frac{2}{9}$, $\frac{1}{9} a^{7} + \frac{1}{9} a^{5} - \frac{1}{9} a^{4} + \frac{4}{9} a^{3} + \frac{2}{9} a^{2} + \frac{1}{3} a - \frac{1}{9}$
Class group and class number
Trivial group, which has order $1$
Unit group
| Rank: | $3$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -\frac{8}{9} a^{7} + 4 a^{6} - \frac{146}{9} a^{5} + \frac{281}{9} a^{4} - \frac{422}{9} a^{3} + \frac{230}{9} a^{2} - 12 a - \frac{196}{9} \) (order $6$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | \( \frac{4}{3} a^{7} - \frac{55}{9} a^{6} + \frac{224}{9} a^{5} - \frac{440}{9} a^{4} + \frac{665}{9} a^{3} - \frac{380}{9} a^{2} + \frac{161}{9} a + \frac{308}{9} \), \( \frac{26}{9} a^{7} - \frac{119}{9} a^{6} + \frac{161}{3} a^{5} - 105 a^{4} + 158 a^{3} - \frac{266}{3} a^{2} + \frac{337}{9} a + \frac{674}{9} \), \( \frac{104}{9} a^{7} - \frac{470}{9} a^{6} + 212 a^{5} - \frac{1232}{3} a^{4} + 618 a^{3} - 345 a^{2} + \frac{1408}{9} a + \frac{2591}{9} \) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 181.90354526 \) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_2^2:S_4$ (as 8T34):
| A solvable group of order 96 |
| The 10 conjugacy class representatives for $V_4^2:S_3$ |
| Character table for $V_4^2:S_3$ |
Intermediate fields
| \(\Q(\sqrt{-3}) \) |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 12 siblings: | data not computed |
| Degree 16 sibling: | data not computed |
| Degree 24 siblings: | data not computed |
| Degree 32 sibling: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | ${\href{/LocalNumberField/5.4.0.1}{4} }^{2}$ | ${\href{/LocalNumberField/7.3.0.1}{3} }^{2}{,}\,{\href{/LocalNumberField/7.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/11.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/13.3.0.1}{3} }^{2}{,}\,{\href{/LocalNumberField/13.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/17.4.0.1}{4} }^{2}$ | ${\href{/LocalNumberField/19.3.0.1}{3} }^{2}{,}\,{\href{/LocalNumberField/19.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/23.4.0.1}{4} }^{2}$ | ${\href{/LocalNumberField/29.4.0.1}{4} }^{2}$ | ${\href{/LocalNumberField/31.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/37.3.0.1}{3} }^{2}{,}\,{\href{/LocalNumberField/37.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/41.4.0.1}{4} }^{2}$ | R | ${\href{/LocalNumberField/47.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/53.4.0.1}{4} }^{2}$ | ${\href{/LocalNumberField/59.4.0.1}{4} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.8.8.11 | $x^{8} + 20 x^{2} + 4$ | $4$ | $2$ | $8$ | $S_4$ | $[4/3, 4/3]_{3}^{2}$ |
| $3$ | 3.2.1.2 | $x^{2} + 3$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ |
| 3.6.7.4 | $x^{6} + 3 x^{2} + 3$ | $6$ | $1$ | $7$ | $S_3$ | $[3/2]_{2}$ | |
| $43$ | $\Q_{43}$ | $x + 9$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ |
| $\Q_{43}$ | $x + 9$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| $\Q_{43}$ | $x + 9$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| $\Q_{43}$ | $x + 9$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| 43.4.2.1 | $x^{4} + 215 x^{2} + 16641$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ |
Artin representations
| Label | Dimension | Conductor | Defining polynomial of Artin field | $G$ | Ind | $\chi(c)$ | |
|---|---|---|---|---|---|---|---|
| * | 1.1.1t1.1c1 | $1$ | $1$ | $x$ | $C_1$ | $1$ | $1$ |
| * | 1.3.2t1.1c1 | $1$ | $ 3 $ | $x^{2} - x + 1$ | $C_2$ (as 2T1) | $1$ | $-1$ |
| 2.2e2_3e3.3t2.1c1 | $2$ | $ 2^{2} \cdot 3^{3}$ | $x^{3} - 2$ | $S_3$ (as 3T2) | $1$ | $0$ | |
| 3.2e4_3e3_43e2.4t5.1c1 | $3$ | $ 2^{4} \cdot 3^{3} \cdot 43^{2}$ | $x^{4} - 2 x^{3} + 12 x^{2} + 32 x - 88$ | $S_4$ (as 4T5) | $1$ | $1$ | |
| 3.2e2_3e3_43e2.4t5.1c1 | $3$ | $ 2^{2} \cdot 3^{3} \cdot 43^{2}$ | $x^{4} - x^{3} - 16 x - 2$ | $S_4$ (as 4T5) | $1$ | $1$ | |
| 3.2e4_3e3_43e2.4t5.2c1 | $3$ | $ 2^{4} \cdot 3^{3} \cdot 43^{2}$ | $x^{4} - 2 x^{3} - 12 x^{2} - 30 x - 33$ | $S_4$ (as 4T5) | $1$ | $1$ | |
| 3.2e4_3e4_43e2.6t8.1c1 | $3$ | $ 2^{4} \cdot 3^{4} \cdot 43^{2}$ | $x^{4} - 2 x^{3} + 12 x^{2} + 32 x - 88$ | $S_4$ (as 4T5) | $1$ | $-1$ | |
| 3.2e4_3e4_43e2.6t8.2c1 | $3$ | $ 2^{4} \cdot 3^{4} \cdot 43^{2}$ | $x^{4} - 2 x^{3} - 12 x^{2} - 30 x - 33$ | $S_4$ (as 4T5) | $1$ | $-1$ | |
| 3.2e2_3e4_43e2.6t8.1c1 | $3$ | $ 2^{2} \cdot 3^{4} \cdot 43^{2}$ | $x^{4} - x^{3} - 16 x - 2$ | $S_4$ (as 4T5) | $1$ | $-1$ | |
| * | 6.2e8_3e7_43e2.8t34.1c1 | $6$ | $ 2^{8} \cdot 3^{7} \cdot 43^{2}$ | $x^{8} - 4 x^{7} + 16 x^{6} - 26 x^{5} + 35 x^{4} - 2 x^{3} - 2 x^{2} + 32 x + 13$ | $V_4^2:S_3$ (as 8T34) | $1$ | $0$ |