Properties

Label 8.0.299865760000.8
Degree $8$
Signature $[0, 4]$
Discriminant $299865760000$
Root discriminant \(27.20\)
Ramified primes $2,5,37$
Class number $8$
Class group [2, 4]
Galois group $D_4$ (as 8T4)

Related objects

Downloads

Learn more

Show commands: Magma / Oscar / PariGP / SageMath

Normalized defining polynomial

sage: x = polygen(QQ); K.<a> = NumberField(x^8 - 4*x^7 + 8*x^6 - 2*x^5 + 89*x^4 - 182*x^3 + 18*x^2 - 264*x + 1936)
 
gp: K = bnfinit(y^8 - 4*y^7 + 8*y^6 - 2*y^5 + 89*y^4 - 182*y^3 + 18*y^2 - 264*y + 1936, 1)
 
magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(x^8 - 4*x^7 + 8*x^6 - 2*x^5 + 89*x^4 - 182*x^3 + 18*x^2 - 264*x + 1936);
 
oscar: Qx, x = polynomial_ring(QQ); K, a = number_field(x^8 - 4*x^7 + 8*x^6 - 2*x^5 + 89*x^4 - 182*x^3 + 18*x^2 - 264*x + 1936)
 

\( x^{8} - 4x^{7} + 8x^{6} - 2x^{5} + 89x^{4} - 182x^{3} + 18x^{2} - 264x + 1936 \) Copy content Toggle raw display

sage: K.defining_polynomial()
 
gp: K.pol
 
magma: DefiningPolynomial(K);
 
oscar: defining_polynomial(K)
 

Invariants

Degree:  $8$
sage: K.degree()
 
gp: poldegree(K.pol)
 
magma: Degree(K);
 
oscar: degree(K)
 
Signature:  $[0, 4]$
sage: K.signature()
 
gp: K.sign
 
magma: Signature(K);
 
oscar: signature(K)
 
Discriminant:   \(299865760000\) \(\medspace = 2^{8}\cdot 5^{4}\cdot 37^{4}\) Copy content Toggle raw display
sage: K.disc()
 
gp: K.disc
 
magma: OK := Integers(K); Discriminant(OK);
 
oscar: OK = ring_of_integers(K); discriminant(OK)
 
Root discriminant:  \(27.20\)
sage: (K.disc().abs())^(1./K.degree())
 
gp: abs(K.disc)^(1/poldegree(K.pol))
 
magma: Abs(Discriminant(OK))^(1/Degree(K));
 
oscar: (1.0 * dK)^(1/degree(K))
 
Galois root discriminant:  $2\cdot 5^{1/2}37^{1/2}\approx 27.202941017470888$
Ramified primes:   \(2\), \(5\), \(37\) Copy content Toggle raw display
sage: K.disc().support()
 
gp: factor(abs(K.disc))[,1]~
 
magma: PrimeDivisors(Discriminant(OK));
 
oscar: prime_divisors(discriminant((OK)))
 
Discriminant root field:  \(\Q\)
$\card{ \Gal(K/\Q) }$:  $8$
sage: K.automorphisms()
 
magma: Automorphisms(K);
 
oscar: automorphisms(K)
 
This field is Galois over $\Q$.
This is not a CM field.

Integral basis (with respect to field generator \(a\))

$1$, $a$, $a^{2}$, $a^{3}$, $\frac{1}{2}a^{4}-\frac{1}{2}a^{2}$, $\frac{1}{2}a^{5}-\frac{1}{2}a^{3}$, $\frac{1}{260}a^{6}+\frac{23}{260}a^{5}+\frac{63}{260}a^{4}+\frac{121}{260}a^{3}-\frac{31}{130}a^{2}+\frac{59}{130}a+\frac{19}{65}$, $\frac{1}{1103960}a^{7}+\frac{327}{220792}a^{6}-\frac{118341}{1103960}a^{5}+\frac{9117}{1103960}a^{4}-\frac{16017}{110396}a^{3}-\frac{268183}{551980}a^{2}-\frac{47587}{275990}a+\frac{303}{965}$ Copy content Toggle raw display

sage: K.integral_basis()
 
gp: K.zk
 
magma: IntegralBasis(K);
 
oscar: basis(OK)
 

Monogenic:  No
Index:  Not computed
Inessential primes:  $2$

Class group and class number

$C_{2}\times C_{4}$, which has order $8$

sage: K.class_group().invariants()
 
gp: K.clgp
 
magma: ClassGroup(K);
 
oscar: class_group(K)
 

Unit group

sage: UK = K.unit_group()
 
magma: UK, fUK := UnitGroup(K);
 
oscar: UK, fUK = unit_group(OK)
 
Rank:  $3$
sage: UK.rank()
 
gp: K.fu
 
magma: UnitRank(K);
 
oscar: rank(UK)
 
Torsion generator:   \( \frac{31}{84920} a^{7} - \frac{267}{84920} a^{6} - \frac{27}{84920} a^{5} + \frac{2391}{84920} a^{4} - \frac{2971}{42460} a^{3} - \frac{4251}{42460} a^{2} - \frac{6081}{21230} a + \frac{181}{193} \)  (order $4$) Copy content Toggle raw display
sage: UK.torsion_generator()
 
gp: K.tu[2]
 
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
 
oscar: torsion_units_generator(OK)
 
Fundamental units:   $\frac{401}{110396}a^{7}-\frac{93}{27599}a^{6}-\frac{892}{27599}a^{5}+\frac{13855}{55198}a^{4}-\frac{35019}{110396}a^{3}+\frac{35273}{55198}a^{2}-\frac{199165}{55198}a+\frac{8739}{2509}$, $\frac{512}{137995}a^{7}+\frac{509}{551980}a^{6}-\frac{45271}{551980}a^{5}+\frac{114473}{551980}a^{4}+\frac{172779}{551980}a^{3}-\frac{70909}{137995}a^{2}-\frac{1368811}{275990}a-\frac{2177}{2509}$, $\frac{621}{275990}a^{7}+\frac{7451}{551980}a^{6}-\frac{44569}{551980}a^{5}+\frac{52307}{551980}a^{4}+\frac{327271}{551980}a^{3}-\frac{15646}{137995}a^{2}-\frac{1052599}{275990}a-\frac{11589}{2509}$ Copy content Toggle raw display
sage: UK.fundamental_units()
 
gp: K.fu
 
magma: [K|fUK(g): g in Generators(UK)];
 
oscar: [K(fUK(a)) for a in gens(UK)]
 
Regulator:  \( 1160.93046542 \)
sage: K.regulator()
 
gp: K.reg
 
magma: Regulator(K);
 
oscar: regulator(K)
 

Class number formula

\[ \begin{aligned}\lim_{s\to 1} (s-1)\zeta_K(s) =\mathstrut & \frac{2^{r_1}\cdot (2\pi)^{r_2}\cdot R\cdot h}{w\cdot\sqrt{|D|}}\cr \approx\mathstrut &\frac{2^{0}\cdot(2\pi)^{4}\cdot 1160.93046542 \cdot 8}{4\cdot\sqrt{299865760000}}\cr\approx \mathstrut & 6.60833784603 \end{aligned}\]

# self-contained SageMath code snippet to compute the analytic class number formula
 
x = polygen(QQ); K.<a> = NumberField(x^8 - 4*x^7 + 8*x^6 - 2*x^5 + 89*x^4 - 182*x^3 + 18*x^2 - 264*x + 1936)
 
DK = K.disc(); r1,r2 = K.signature(); RK = K.regulator(); RR = RK.parent()
 
hK = K.class_number(); wK = K.unit_group().torsion_generator().order();
 
2^r1 * (2*RR(pi))^r2 * RK * hK / (wK * RR(sqrt(abs(DK))))
 
# self-contained Pari/GP code snippet to compute the analytic class number formula
 
K = bnfinit(x^8 - 4*x^7 + 8*x^6 - 2*x^5 + 89*x^4 - 182*x^3 + 18*x^2 - 264*x + 1936, 1);
 
[polcoeff (lfunrootres (lfuncreate (K))[1][1][2], -1), 2^K.r1 * (2*Pi)^K.r2 * K.reg * K.no / (K.tu[1] * sqrt (abs (K.disc)))]
 
/* self-contained Magma code snippet to compute the analytic class number formula */
 
Qx<x> := PolynomialRing(QQ); K<a> := NumberField(x^8 - 4*x^7 + 8*x^6 - 2*x^5 + 89*x^4 - 182*x^3 + 18*x^2 - 264*x + 1936);
 
OK := Integers(K); DK := Discriminant(OK);
 
UK, fUK := UnitGroup(OK); clK, fclK := ClassGroup(OK);
 
r1,r2 := Signature(K); RK := Regulator(K); RR := Parent(RK);
 
hK := #clK; wK := #TorsionSubgroup(UK);
 
2^r1 * (2*Pi(RR))^r2 * RK * hK / (wK * Sqrt(RR!Abs(DK)));
 
# self-contained Oscar code snippet to compute the analytic class number formula
 
Qx, x = PolynomialRing(QQ); K, a = NumberField(x^8 - 4*x^7 + 8*x^6 - 2*x^5 + 89*x^4 - 182*x^3 + 18*x^2 - 264*x + 1936);
 
OK = ring_of_integers(K); DK = discriminant(OK);
 
UK, fUK = unit_group(OK); clK, fclK = class_group(OK);
 
r1,r2 = signature(K); RK = regulator(K); RR = parent(RK);
 
hK = order(clK); wK = torsion_units_order(K);
 
2^r1 * (2*pi)^r2 * RK * hK / (wK * sqrt(RR(abs(DK))))
 

Galois group

$D_4$ (as 8T4):

sage: K.galois_group(type='pari')
 
gp: polgalois(K.pol)
 
magma: G = GaloisGroup(K);
 
oscar: G, Gtx = galois_group(K); G, transitive_group_identification(G)
 
A solvable group of order 8
The 5 conjugacy class representatives for $D_4$
Character table for $D_4$

Intermediate fields

\(\Q(\sqrt{-185}) \), \(\Q(\sqrt{-1}) \), \(\Q(\sqrt{185}) \), \(\Q(i, \sqrt{185})\), 4.0.2960.1 x2, 4.2.136900.1 x2

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

sage: K.subfields()[1:-1]
 
gp: L = nfsubfields(K); L[2..length(b)]
 
magma: L := Subfields(K); L[2..#L];
 
oscar: subfields(K)[2:end-1]
 

Sibling fields

Degree 4 siblings: 4.2.136900.1, 4.0.2960.1
Minimal sibling: 4.0.2960.1

Frobenius cycle types

$p$ $2$ $3$ $5$ $7$ $11$ $13$ $17$ $19$ $23$ $29$ $31$ $37$ $41$ $43$ $47$ $53$ $59$
Cycle type R ${\href{/padicField/3.4.0.1}{4} }^{2}$ R ${\href{/padicField/7.4.0.1}{4} }^{2}$ ${\href{/padicField/11.2.0.1}{2} }^{4}$ ${\href{/padicField/13.2.0.1}{2} }^{4}$ ${\href{/padicField/17.2.0.1}{2} }^{4}$ ${\href{/padicField/19.4.0.1}{4} }^{2}$ ${\href{/padicField/23.2.0.1}{2} }^{4}$ ${\href{/padicField/29.2.0.1}{2} }^{4}$ ${\href{/padicField/31.4.0.1}{4} }^{2}$ R ${\href{/padicField/41.1.0.1}{1} }^{8}$ ${\href{/padicField/43.2.0.1}{2} }^{4}$ ${\href{/padicField/47.4.0.1}{4} }^{2}$ ${\href{/padicField/53.2.0.1}{2} }^{4}$ ${\href{/padicField/59.4.0.1}{4} }^{2}$

In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.

# to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7$ in Sage:
 
p = 7; [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]
 
\\ to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7$ in Pari:
 
p = 7; pfac = idealprimedec(K, p); vector(length(pfac), j, [pfac[j][3], pfac[j][4]])
 
// to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7 in Magma:
 
p := 7; [<pr[2], Valuation(Norm(pr[1]), p)> : pr in Factorization(p*Integers(K))];
 
# to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7$ in Oscar:
 
p = 7; pfac = factor(ideal(ring_of_integers(K), p)); [(e, valuation(norm(pr),p)) for (pr,e) in pfac]
 

Local algebras for ramified primes

$p$LabelPolynomial $e$ $f$ $c$ Galois group Slope content
\(2\) Copy content Toggle raw display 2.2.2.1$x^{2} + 2 x + 2$$2$$1$$2$$C_2$$[2]$
2.2.2.1$x^{2} + 2 x + 2$$2$$1$$2$$C_2$$[2]$
2.2.2.1$x^{2} + 2 x + 2$$2$$1$$2$$C_2$$[2]$
2.2.2.1$x^{2} + 2 x + 2$$2$$1$$2$$C_2$$[2]$
\(5\) Copy content Toggle raw display 5.2.1.2$x^{2} + 10$$2$$1$$1$$C_2$$[\ ]_{2}$
5.2.1.2$x^{2} + 10$$2$$1$$1$$C_2$$[\ ]_{2}$
5.2.1.2$x^{2} + 10$$2$$1$$1$$C_2$$[\ ]_{2}$
5.2.1.2$x^{2} + 10$$2$$1$$1$$C_2$$[\ ]_{2}$
\(37\) Copy content Toggle raw display 37.2.1.2$x^{2} + 74$$2$$1$$1$$C_2$$[\ ]_{2}$
37.2.1.2$x^{2} + 74$$2$$1$$1$$C_2$$[\ ]_{2}$
37.2.1.2$x^{2} + 74$$2$$1$$1$$C_2$$[\ ]_{2}$
37.2.1.2$x^{2} + 74$$2$$1$$1$$C_2$$[\ ]_{2}$

Artin representations

Label Dimension Conductor Artin stem field $G$ Ind $\chi(c)$
* 1.1.1t1.a.a$1$ $1$ \(\Q\) $C_1$ $1$ $1$
* 1.4.2t1.a.a$1$ $ 2^{2}$ \(\Q(\sqrt{-1}) \) $C_2$ (as 2T1) $1$ $-1$
* 1.185.2t1.a.a$1$ $ 5 \cdot 37 $ \(\Q(\sqrt{185}) \) $C_2$ (as 2T1) $1$ $1$
* 1.740.2t1.a.a$1$ $ 2^{2} \cdot 5 \cdot 37 $ \(\Q(\sqrt{-185}) \) $C_2$ (as 2T1) $1$ $-1$
*2 2.740.4t3.f.a$2$ $ 2^{2} \cdot 5 \cdot 37 $ 8.0.299865760000.8 $D_4$ (as 8T4) $1$ $0$

Data is given for all irreducible representations of the Galois group for the Galois closure of this field. Those marked with * are summands in the permutation representation coming from this field. Representations which appear with multiplicity greater than one are indicated by exponents on the *.