Normalized defining polynomial
\( x^{8} - 4x^{7} + 8x^{6} - 2x^{5} + 89x^{4} - 182x^{3} + 18x^{2} - 264x + 1936 \)
Invariants
Degree: | $8$ | sage: K.degree()
gp: poldegree(K.pol)
magma: Degree(K);
oscar: degree(K)
| |
Signature: | $[0, 4]$ | sage: K.signature()
gp: K.sign
magma: Signature(K);
oscar: signature(K)
| |
Discriminant: | \(299865760000\) \(\medspace = 2^{8}\cdot 5^{4}\cdot 37^{4}\) | sage: K.disc()
gp: K.disc
magma: OK := Integers(K); Discriminant(OK);
oscar: OK = ring_of_integers(K); discriminant(OK)
| |
Root discriminant: | \(27.20\) | sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
magma: Abs(Discriminant(OK))^(1/Degree(K));
oscar: (1.0 * dK)^(1/degree(K))
| |
Galois root discriminant: | $2\cdot 5^{1/2}37^{1/2}\approx 27.202941017470888$ | ||
Ramified primes: | \(2\), \(5\), \(37\) | sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
magma: PrimeDivisors(Discriminant(OK));
oscar: prime_divisors(discriminant((OK)))
| |
Discriminant root field: | \(\Q\) | ||
$\card{ \Gal(K/\Q) }$: | $8$ | sage: K.automorphisms()
magma: Automorphisms(K);
oscar: automorphisms(K)
| |
This field is Galois over $\Q$. | |||
This is not a CM field. |
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $\frac{1}{2}a^{4}-\frac{1}{2}a^{2}$, $\frac{1}{2}a^{5}-\frac{1}{2}a^{3}$, $\frac{1}{260}a^{6}+\frac{23}{260}a^{5}+\frac{63}{260}a^{4}+\frac{121}{260}a^{3}-\frac{31}{130}a^{2}+\frac{59}{130}a+\frac{19}{65}$, $\frac{1}{1103960}a^{7}+\frac{327}{220792}a^{6}-\frac{118341}{1103960}a^{5}+\frac{9117}{1103960}a^{4}-\frac{16017}{110396}a^{3}-\frac{268183}{551980}a^{2}-\frac{47587}{275990}a+\frac{303}{965}$
Monogenic: | No | |
Index: | Not computed | |
Inessential primes: | $2$ |
Class group and class number
$C_{2}\times C_{4}$, which has order $8$
Unit group
Rank: | $3$ | sage: UK.rank()
gp: K.fu
magma: UnitRank(K);
oscar: rank(UK)
| |
Torsion generator: | \( \frac{31}{84920} a^{7} - \frac{267}{84920} a^{6} - \frac{27}{84920} a^{5} + \frac{2391}{84920} a^{4} - \frac{2971}{42460} a^{3} - \frac{4251}{42460} a^{2} - \frac{6081}{21230} a + \frac{181}{193} \) (order $4$) | sage: UK.torsion_generator()
gp: K.tu[2]
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
oscar: torsion_units_generator(OK)
| |
Fundamental units: | $\frac{401}{110396}a^{7}-\frac{93}{27599}a^{6}-\frac{892}{27599}a^{5}+\frac{13855}{55198}a^{4}-\frac{35019}{110396}a^{3}+\frac{35273}{55198}a^{2}-\frac{199165}{55198}a+\frac{8739}{2509}$, $\frac{512}{137995}a^{7}+\frac{509}{551980}a^{6}-\frac{45271}{551980}a^{5}+\frac{114473}{551980}a^{4}+\frac{172779}{551980}a^{3}-\frac{70909}{137995}a^{2}-\frac{1368811}{275990}a-\frac{2177}{2509}$, $\frac{621}{275990}a^{7}+\frac{7451}{551980}a^{6}-\frac{44569}{551980}a^{5}+\frac{52307}{551980}a^{4}+\frac{327271}{551980}a^{3}-\frac{15646}{137995}a^{2}-\frac{1052599}{275990}a-\frac{11589}{2509}$ | sage: UK.fundamental_units()
gp: K.fu
magma: [K|fUK(g): g in Generators(UK)];
oscar: [K(fUK(a)) for a in gens(UK)]
| |
Regulator: | \( 1160.93046542 \) | sage: K.regulator()
gp: K.reg
magma: Regulator(K);
oscar: regulator(K)
|
Class number formula
\[ \begin{aligned}\lim_{s\to 1} (s-1)\zeta_K(s) =\mathstrut & \frac{2^{r_1}\cdot (2\pi)^{r_2}\cdot R\cdot h}{w\cdot\sqrt{|D|}}\cr \approx\mathstrut &\frac{2^{0}\cdot(2\pi)^{4}\cdot 1160.93046542 \cdot 8}{4\cdot\sqrt{299865760000}}\cr\approx \mathstrut & 6.60833784603 \end{aligned}\]
Galois group
A solvable group of order 8 |
The 5 conjugacy class representatives for $D_4$ |
Character table for $D_4$ |
Intermediate fields
\(\Q(\sqrt{-185}) \), \(\Q(\sqrt{-1}) \), \(\Q(\sqrt{185}) \), \(\Q(i, \sqrt{185})\), 4.0.2960.1 x2, 4.2.136900.1 x2 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Degree 4 siblings: | 4.2.136900.1, 4.0.2960.1 |
Minimal sibling: | 4.0.2960.1 |
Frobenius cycle types
$p$ | $2$ | $3$ | $5$ | $7$ | $11$ | $13$ | $17$ | $19$ | $23$ | $29$ | $31$ | $37$ | $41$ | $43$ | $47$ | $53$ | $59$ |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Cycle type | R | ${\href{/padicField/3.4.0.1}{4} }^{2}$ | R | ${\href{/padicField/7.4.0.1}{4} }^{2}$ | ${\href{/padicField/11.2.0.1}{2} }^{4}$ | ${\href{/padicField/13.2.0.1}{2} }^{4}$ | ${\href{/padicField/17.2.0.1}{2} }^{4}$ | ${\href{/padicField/19.4.0.1}{4} }^{2}$ | ${\href{/padicField/23.2.0.1}{2} }^{4}$ | ${\href{/padicField/29.2.0.1}{2} }^{4}$ | ${\href{/padicField/31.4.0.1}{4} }^{2}$ | R | ${\href{/padicField/41.1.0.1}{1} }^{8}$ | ${\href{/padicField/43.2.0.1}{2} }^{4}$ | ${\href{/padicField/47.4.0.1}{4} }^{2}$ | ${\href{/padicField/53.2.0.1}{2} }^{4}$ | ${\href{/padicField/59.4.0.1}{4} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
$p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
---|---|---|---|---|---|---|---|
\(2\) | 2.2.2.1 | $x^{2} + 2 x + 2$ | $2$ | $1$ | $2$ | $C_2$ | $[2]$ |
2.2.2.1 | $x^{2} + 2 x + 2$ | $2$ | $1$ | $2$ | $C_2$ | $[2]$ | |
2.2.2.1 | $x^{2} + 2 x + 2$ | $2$ | $1$ | $2$ | $C_2$ | $[2]$ | |
2.2.2.1 | $x^{2} + 2 x + 2$ | $2$ | $1$ | $2$ | $C_2$ | $[2]$ | |
\(5\) | 5.2.1.2 | $x^{2} + 10$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ |
5.2.1.2 | $x^{2} + 10$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
5.2.1.2 | $x^{2} + 10$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
5.2.1.2 | $x^{2} + 10$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
\(37\) | 37.2.1.2 | $x^{2} + 74$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ |
37.2.1.2 | $x^{2} + 74$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
37.2.1.2 | $x^{2} + 74$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
37.2.1.2 | $x^{2} + 74$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ |
Artin representations
Label | Dimension | Conductor | Artin stem field | $G$ | Ind | $\chi(c)$ | |
---|---|---|---|---|---|---|---|
* | 1.1.1t1.a.a | $1$ | $1$ | \(\Q\) | $C_1$ | $1$ | $1$ |
* | 1.4.2t1.a.a | $1$ | $ 2^{2}$ | \(\Q(\sqrt{-1}) \) | $C_2$ (as 2T1) | $1$ | $-1$ |
* | 1.185.2t1.a.a | $1$ | $ 5 \cdot 37 $ | \(\Q(\sqrt{185}) \) | $C_2$ (as 2T1) | $1$ | $1$ |
* | 1.740.2t1.a.a | $1$ | $ 2^{2} \cdot 5 \cdot 37 $ | \(\Q(\sqrt{-185}) \) | $C_2$ (as 2T1) | $1$ | $-1$ |
*2 | 2.740.4t3.f.a | $2$ | $ 2^{2} \cdot 5 \cdot 37 $ | 8.0.299865760000.8 | $D_4$ (as 8T4) | $1$ | $0$ |