Normalized defining polynomial
\( x^{8} - 4x^{7} + 32x^{6} - 52x^{5} + 40x^{4} + 40x^{3} + 80x^{2} + 40x + 10 \)
Invariants
| Degree: | $8$ |
| |
| Signature: | $[0, 4]$ |
| |
| Discriminant: |
\(298598400000000\)
\(\medspace = 2^{20}\cdot 3^{6}\cdot 5^{8}\)
|
| |
| Root discriminant: | \(64.47\) |
| |
| Galois root discriminant: | $2^{73/28}3^{3/4}5^{41/30}\approx 125.29338713344646$ | ||
| Ramified primes: |
\(2\), \(3\), \(5\)
|
| |
| Discriminant root field: | \(\Q\) | ||
| $\Aut(K/\Q)$: | $C_1$ |
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
| This field has no CM subfields. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $\frac{1}{50885}a^{7}-\frac{17636}{50885}a^{6}-\frac{251}{50885}a^{5}-\frac{283}{10177}a^{4}+\frac{3134}{10177}a^{3}+\frac{2430}{10177}a^{2}-\frac{574}{10177}a+\frac{4838}{10177}$
| Monogenic: | Not computed | |
| Index: | $1$ | |
| Inessential primes: | None |
Class group and class number
| Ideal class group: | $C_{2}$, which has order $2$ (assuming GRH) |
| |
| Narrow class group: | $C_{2}$, which has order $2$ (assuming GRH) |
|
Unit group
| Rank: | $3$ |
| |
| Torsion generator: |
\( -1 \)
(order $2$)
|
| |
| Fundamental units: |
$\frac{1864}{50885}a^{7}-\frac{1794}{50885}a^{6}+\frac{40986}{50885}a^{5}+\frac{11869}{10177}a^{4}-\frac{20176}{10177}a^{3}+\frac{71994}{10177}a^{2}+\frac{29180}{10177}a+\frac{52095}{10177}$, $\frac{976}{50885}a^{7}-\frac{13606}{50885}a^{6}+\frac{60334}{50885}a^{5}-\frac{62491}{10177}a^{4}+\frac{46392}{10177}a^{3}+\frac{71678}{10177}a^{2}-\frac{193852}{10177}a-\frac{234311}{10177}$, $\frac{1313959}{50885}a^{7}-\frac{4836884}{50885}a^{6}+\frac{39570506}{50885}a^{5}-\frac{10434596}{10177}a^{4}-\frac{53420}{10177}a^{3}+\frac{26031333}{10177}a^{2}+\frac{15392628}{10177}a+\frac{3605551}{10177}$
|
| |
| Regulator: | \( 10086.8109446 \) (assuming GRH) |
|
Class number formula
\[ \begin{aligned}\lim_{s\to 1} (s-1)\zeta_K(s) =\mathstrut & \frac{2^{r_1}\cdot (2\pi)^{r_2}\cdot R\cdot h}{w\cdot\sqrt{|D|}}\cr \approx\mathstrut &\frac{2^{0}\cdot(2\pi)^{4}\cdot 10086.8109446 \cdot 2}{2\cdot\sqrt{298598400000000}}\cr\approx \mathstrut & 0.909765819949 \end{aligned}\] (assuming GRH)
Galois group
| A non-solvable group of order 20160 |
| The 14 conjugacy class representatives for $A_8$ |
| Character table for $A_8$ |
Intermediate fields
| The extension is primitive: there are no intermediate fields between this field and $\Q$. |
Sibling fields
| Degree 15 siblings: | deg 15, deg 15 |
| Degree 28 sibling: | deg 28 |
| Degree 35 sibling: | deg 35 |
| Minimal sibling: | This field is its own minimal sibling |
Frobenius cycle types
| $p$ | $2$ | $3$ | $5$ | $7$ | $11$ | $13$ | $17$ | $19$ | $23$ | $29$ | $31$ | $37$ | $41$ | $43$ | $47$ | $53$ | $59$ |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | R | ${\href{/padicField/7.7.0.1}{7} }{,}\,{\href{/padicField/7.1.0.1}{1} }$ | ${\href{/padicField/11.4.0.1}{4} }{,}\,{\href{/padicField/11.2.0.1}{2} }{,}\,{\href{/padicField/11.1.0.1}{1} }^{2}$ | ${\href{/padicField/13.5.0.1}{5} }{,}\,{\href{/padicField/13.3.0.1}{3} }$ | ${\href{/padicField/17.4.0.1}{4} }{,}\,{\href{/padicField/17.2.0.1}{2} }{,}\,{\href{/padicField/17.1.0.1}{1} }^{2}$ | ${\href{/padicField/19.4.0.1}{4} }{,}\,{\href{/padicField/19.2.0.1}{2} }{,}\,{\href{/padicField/19.1.0.1}{1} }^{2}$ | ${\href{/padicField/23.4.0.1}{4} }{,}\,{\href{/padicField/23.2.0.1}{2} }{,}\,{\href{/padicField/23.1.0.1}{1} }^{2}$ | ${\href{/padicField/29.4.0.1}{4} }{,}\,{\href{/padicField/29.2.0.1}{2} }{,}\,{\href{/padicField/29.1.0.1}{1} }^{2}$ | ${\href{/padicField/31.5.0.1}{5} }{,}\,{\href{/padicField/31.3.0.1}{3} }$ | ${\href{/padicField/37.6.0.1}{6} }{,}\,{\href{/padicField/37.2.0.1}{2} }$ | ${\href{/padicField/41.7.0.1}{7} }{,}\,{\href{/padicField/41.1.0.1}{1} }$ | ${\href{/padicField/43.4.0.1}{4} }^{2}$ | ${\href{/padicField/47.6.0.1}{6} }{,}\,{\href{/padicField/47.2.0.1}{2} }$ | ${\href{/padicField/53.5.0.1}{5} }{,}\,{\href{/padicField/53.3.0.1}{3} }$ | ${\href{/padicField/59.6.0.1}{6} }{,}\,{\href{/padicField/59.2.0.1}{2} }$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
|
\(2\)
| 2.1.8.20a1.1 | $x^{8} + 4 x^{5} + 2$ | $8$ | $1$ | $20$ | $C_2^3:(C_7: C_3)$ | $$[\frac{20}{7}, \frac{20}{7}, \frac{20}{7}]_{7}^{3}$$ |
|
\(3\)
| 3.2.4.6a1.3 | $x^{8} + 8 x^{7} + 32 x^{6} + 80 x^{5} + 136 x^{4} + 160 x^{3} + 128 x^{2} + 67 x + 19$ | $4$ | $2$ | $6$ | $Q_8$ | $$[\ ]_{4}^{2}$$ |
|
\(5\)
| 5.1.3.2a1.1 | $x^{3} + 5$ | $3$ | $1$ | $2$ | $S_3$ | $$[\ ]_{3}^{2}$$ |
| 5.1.5.6a2.1 | $x^{5} + 5 x^{2} + 5$ | $5$ | $1$ | $6$ | $F_5$ | $$[\frac{3}{2}]_{2}^{2}$$ |