Normalized defining polynomial
\( x^{8} + 44 x^{6} + 308 x^{4} + 484 x^{2} + 121 \)
Invariants
| Degree: | $8$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 4]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(29721861554176=2^{24}\cdot 11^{6}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $48.32$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 11$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois over $\Q$. | |||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $\frac{1}{33} a^{4} - \frac{1}{3} a^{2} + \frac{1}{3}$, $\frac{1}{33} a^{5} - \frac{1}{3} a^{3} + \frac{1}{3} a$, $\frac{1}{231} a^{6} - \frac{1}{3} a^{2} + \frac{2}{21}$, $\frac{1}{231} a^{7} - \frac{1}{3} a^{3} + \frac{2}{21} a$
Class group and class number
$C_{3}\times C_{6}$, which has order $18$
Unit group
| Rank: | $3$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | \( \frac{1}{77} a^{6} + \frac{6}{11} a^{4} + 3 a^{2} + \frac{23}{7} \), \( \frac{1}{231} a^{6} + \frac{5}{33} a^{4} - \frac{5}{21} \), \( \frac{9}{77} a^{6} + \frac{53}{11} a^{4} + 23 a^{2} + \frac{46}{7} \) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 126.131828435 \) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 8 |
| The 5 conjugacy class representatives for $Q_8$ |
| Character table for $Q_8$ |
Intermediate fields
| \(\Q(\sqrt{2}) \), \(\Q(\sqrt{22}) \), \(\Q(\sqrt{11}) \), \(\Q(\sqrt{2}, \sqrt{11})\) |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/LocalNumberField/3.4.0.1}{4} }^{2}$ | ${\href{/LocalNumberField/5.4.0.1}{4} }^{2}$ | ${\href{/LocalNumberField/7.2.0.1}{2} }^{4}$ | R | ${\href{/LocalNumberField/13.4.0.1}{4} }^{2}$ | ${\href{/LocalNumberField/17.4.0.1}{4} }^{2}$ | ${\href{/LocalNumberField/19.4.0.1}{4} }^{2}$ | ${\href{/LocalNumberField/23.4.0.1}{4} }^{2}$ | ${\href{/LocalNumberField/29.4.0.1}{4} }^{2}$ | ${\href{/LocalNumberField/31.4.0.1}{4} }^{2}$ | ${\href{/LocalNumberField/37.4.0.1}{4} }^{2}$ | ${\href{/LocalNumberField/41.4.0.1}{4} }^{2}$ | ${\href{/LocalNumberField/43.4.0.1}{4} }^{2}$ | ${\href{/LocalNumberField/47.4.0.1}{4} }^{2}$ | ${\href{/LocalNumberField/53.4.0.1}{4} }^{2}$ | ${\href{/LocalNumberField/59.4.0.1}{4} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.8.24.12 | $x^{8} + 14 x^{4} + 8 x^{3} + 12 x^{2} + 8 x + 30$ | $8$ | $1$ | $24$ | $Q_8$ | $[2, 3, 4]$ |
| $11$ | 11.8.6.1 | $x^{8} + 143 x^{4} + 5929$ | $4$ | $2$ | $6$ | $Q_8$ | $[\ ]_{4}^{2}$ |
Artin representations
| Label | Dimension | Conductor | Defining polynomial of Artin field | $G$ | Ind | $\chi(c)$ | |
|---|---|---|---|---|---|---|---|
| * | 1.1.1t1.1c1 | $1$ | $1$ | $x$ | $C_1$ | $1$ | $1$ |
| * | 1.2e3.2t1.1c1 | $1$ | $ 2^{3}$ | $x^{2} - 2$ | $C_2$ (as 2T1) | $1$ | $1$ |
| * | 1.2e3_11.2t1.1c1 | $1$ | $ 2^{3} \cdot 11 $ | $x^{2} - 22$ | $C_2$ (as 2T1) | $1$ | $1$ |
| * | 1.2e2_11.2t1.1c1 | $1$ | $ 2^{2} \cdot 11 $ | $x^{2} - 11$ | $C_2$ (as 2T1) | $1$ | $1$ |
| *2 | 2.2e8_11e2.8t5.2c1 | $2$ | $ 2^{8} \cdot 11^{2}$ | $x^{8} + 44 x^{6} + 308 x^{4} + 484 x^{2} + 121$ | $Q_8$ (as 8T5) | $-1$ | $-2$ |