Normalized defining polynomial
\( x^{8} - x^{7} + 1646 x^{6} + 3374 x^{5} + 675121 x^{4} + 1559767 x^{3} + 64010176 x^{2} - 139767108 x + 480344032 \)
Invariants
| Degree: | $8$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 4]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(2850736989716891767937=59^{4}\cdot 113^{7}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $480.70$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $59, 113$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois and abelian over $\Q$. | |||
| Conductor: | \(6667=59\cdot 113\) | ||
| Dirichlet character group: | $\lbrace$$\chi_{6667}(1,·)$, $\chi_{6667}(1061,·)$, $\chi_{6667}(5665,·)$, $\chi_{6667}(3598,·)$, $\chi_{6667}(3954,·)$, $\chi_{6667}(1651,·)$, $\chi_{6667}(5781,·)$, $\chi_{6667}(4957,·)$$\rbrace$ | ||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $\frac{1}{2} a^{2} - \frac{1}{2} a$, $\frac{1}{2} a^{3} - \frac{1}{2} a$, $\frac{1}{8} a^{4} - \frac{1}{4} a^{3} - \frac{1}{8} a^{2} + \frac{1}{4} a$, $\frac{1}{112} a^{5} + \frac{1}{112} a^{4} + \frac{3}{16} a^{3} - \frac{1}{112} a^{2} - \frac{11}{56} a$, $\frac{1}{224} a^{6} - \frac{1}{224} a^{5} - \frac{9}{224} a^{4} - \frac{43}{224} a^{3} - \frac{3}{14} a^{2} + \frac{25}{56} a$, $\frac{1}{1772261402212889448448} a^{7} - \frac{141235049686131291}{110766337638305590528} a^{6} + \frac{1454964657308008927}{886130701106444724224} a^{5} + \frac{11540049197681985427}{443065350553222362112} a^{4} - \frac{399113061990141490883}{1772261402212889448448} a^{3} - \frac{63081356503892986551}{443065350553222362112} a^{2} - \frac{169982683099615441399}{443065350553222362112} a + \frac{1203644659667433671}{7911881259878970752}$
Class group and class number
$C_{1316786}$, which has order $1316786$ (assuming GRH)
Unit group
| Rank: | $3$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 5177.33507354 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A cyclic group of order 8 |
| The 8 conjugacy class representatives for $C_8$ |
| Character table for $C_8$ |
Intermediate fields
| \(\Q(\sqrt{113}) \), 4.4.1442897.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.1.0.1}{1} }^{8}$ | ${\href{/LocalNumberField/3.8.0.1}{8} }$ | ${\href{/LocalNumberField/5.8.0.1}{8} }$ | ${\href{/LocalNumberField/7.1.0.1}{1} }^{8}$ | ${\href{/LocalNumberField/11.4.0.1}{4} }^{2}$ | ${\href{/LocalNumberField/13.4.0.1}{4} }^{2}$ | ${\href{/LocalNumberField/17.8.0.1}{8} }$ | ${\href{/LocalNumberField/19.8.0.1}{8} }$ | ${\href{/LocalNumberField/23.8.0.1}{8} }$ | ${\href{/LocalNumberField/29.8.0.1}{8} }$ | ${\href{/LocalNumberField/31.4.0.1}{4} }^{2}$ | ${\href{/LocalNumberField/37.8.0.1}{8} }$ | ${\href{/LocalNumberField/41.4.0.1}{4} }^{2}$ | ${\href{/LocalNumberField/43.8.0.1}{8} }$ | ${\href{/LocalNumberField/47.8.0.1}{8} }$ | ${\href{/LocalNumberField/53.2.0.1}{2} }^{4}$ | R |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $59$ | 59.8.4.2 | $x^{8} - 205379 x^{2} + 169643054$ | $2$ | $4$ | $4$ | $C_8$ | $[\ ]_{2}^{4}$ |
| $113$ | 113.8.7.3 | $x^{8} - 9153$ | $8$ | $1$ | $7$ | $C_8$ | $[\ ]_{8}$ |