Normalized defining polynomial
\( x^{8} - 4 x^{6} - 2 x^{5} + 6 x^{4} - 2 x^{3} + 3 x^{2} + 4 x + 1 \)
Invariants
| Degree: | $8$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 4]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(264777984=2^{8}\cdot 3^{4}\cdot 113^{2}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $11.29$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 3, 113$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $\frac{1}{13} a^{7} - \frac{4}{13} a^{6} - \frac{1}{13} a^{5} + \frac{2}{13} a^{4} - \frac{2}{13} a^{3} + \frac{6}{13} a^{2} + \frac{5}{13} a - \frac{3}{13}$
Class group and class number
Trivial group, which has order $1$
Unit group
| Rank: | $3$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( \frac{8}{13} a^{7} - \frac{6}{13} a^{6} - \frac{34}{13} a^{5} + \frac{3}{13} a^{4} + \frac{62}{13} a^{3} - \frac{43}{13} a^{2} + \frac{40}{13} a + \frac{28}{13} \) (order $6$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 19.7523703725 \) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_2^2:S_4:C_2$ (as 8T41):
| A solvable group of order 192 |
| The 14 conjugacy class representatives for $V_4^2:(S_3\times C_2)$ |
| Character table for $V_4^2:(S_3\times C_2)$ |
Intermediate fields
| \(\Q(\sqrt{-3}) \) |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 8 sibling: | data not computed |
| Degree 12 siblings: | data not computed |
| Degree 16 siblings: | data not computed |
| Degree 24 siblings: | data not computed |
| Degree 32 siblings: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | ${\href{/LocalNumberField/5.6.0.1}{6} }{,}\,{\href{/LocalNumberField/5.2.0.1}{2} }$ | ${\href{/LocalNumberField/7.3.0.1}{3} }^{2}{,}\,{\href{/LocalNumberField/7.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/11.4.0.1}{4} }^{2}$ | ${\href{/LocalNumberField/13.3.0.1}{3} }^{2}{,}\,{\href{/LocalNumberField/13.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/17.6.0.1}{6} }{,}\,{\href{/LocalNumberField/17.2.0.1}{2} }$ | ${\href{/LocalNumberField/19.4.0.1}{4} }^{2}$ | ${\href{/LocalNumberField/23.6.0.1}{6} }{,}\,{\href{/LocalNumberField/23.2.0.1}{2} }$ | ${\href{/LocalNumberField/29.4.0.1}{4} }^{2}$ | ${\href{/LocalNumberField/31.3.0.1}{3} }^{2}{,}\,{\href{/LocalNumberField/31.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/37.4.0.1}{4} }{,}\,{\href{/LocalNumberField/37.2.0.1}{2} }{,}\,{\href{/LocalNumberField/37.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/41.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/43.4.0.1}{4} }{,}\,{\href{/LocalNumberField/43.2.0.1}{2} }{,}\,{\href{/LocalNumberField/43.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/47.4.0.1}{4} }^{2}$ | ${\href{/LocalNumberField/53.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/59.6.0.1}{6} }{,}\,{\href{/LocalNumberField/59.2.0.1}{2} }$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.8.8.2 | $x^{8} + 2 x^{7} + 8 x^{2} + 48$ | $2$ | $4$ | $8$ | $C_2^2:C_4$ | $[2, 2]^{4}$ |
| $3$ | 3.8.4.1 | $x^{8} + 36 x^{4} - 27 x^{2} + 324$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $[\ ]_{2}^{4}$ |
| $113$ | 113.4.0.1 | $x^{4} - x + 5$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ |
| 113.4.2.2 | $x^{4} - 113 x^{2} + 127690$ | $2$ | $2$ | $2$ | $C_4$ | $[\ ]_{2}^{2}$ |
Artin representations
| Label | Dimension | Conductor | Defining polynomial of Artin field | $G$ | Ind | $\chi(c)$ | |
|---|---|---|---|---|---|---|---|
| * | 1.1.1t1.1c1 | $1$ | $1$ | $x$ | $C_1$ | $1$ | $1$ |
| * | 1.3.2t1.1c1 | $1$ | $ 3 $ | $x^{2} - x + 1$ | $C_2$ (as 2T1) | $1$ | $-1$ |
| 1.113.2t1.1c1 | $1$ | $ 113 $ | $x^{2} - x - 28$ | $C_2$ (as 2T1) | $1$ | $1$ | |
| 1.3_113.2t1.1c1 | $1$ | $ 3 \cdot 113 $ | $x^{2} - x + 85$ | $C_2$ (as 2T1) | $1$ | $-1$ | |
| 2.3_113.3t2.1c1 | $2$ | $ 3 \cdot 113 $ | $x^{3} - x^{2} - x + 4$ | $S_3$ (as 3T2) | $1$ | $0$ | |
| 2.3_113.6t3.1c1 | $2$ | $ 3 \cdot 113 $ | $x^{6} - 4 x^{4} + 4 x^{2} + 3$ | $D_{6}$ (as 6T3) | $1$ | $0$ | |
| 3.2e6_3e2_113e2.6t8.3c1 | $3$ | $ 2^{6} \cdot 3^{2} \cdot 113^{2}$ | $x^{4} - 2 x^{3} - 4 x^{2} + 4 x - 2$ | $S_4$ (as 4T5) | $1$ | $-1$ | |
| 3.2e6_3_113e2.6t11.1c1 | $3$ | $ 2^{6} \cdot 3 \cdot 113^{2}$ | $x^{6} - 4 x^{4} - 109 x^{2} - 452$ | $S_4\times C_2$ (as 6T11) | $1$ | $1$ | |
| 3.2e6_3_113.4t5.1c1 | $3$ | $ 2^{6} \cdot 3 \cdot 113 $ | $x^{4} - 2 x^{3} - 4 x^{2} + 4 x - 2$ | $S_4$ (as 4T5) | $1$ | $1$ | |
| 3.2e6_3e2_113.6t11.1c1 | $3$ | $ 2^{6} \cdot 3^{2} \cdot 113 $ | $x^{6} - 4 x^{4} - 109 x^{2} - 452$ | $S_4\times C_2$ (as 6T11) | $1$ | $-1$ | |
| 6.2e10_3e2_113e3.8t41.1c1 | $6$ | $ 2^{10} \cdot 3^{2} \cdot 113^{3}$ | $x^{8} - 4 x^{6} - 2 x^{5} + 6 x^{4} - 2 x^{3} + 3 x^{2} + 4 x + 1$ | $V_4^2:(S_3\times C_2)$ (as 8T41) | $1$ | $2$ | |
| * | 6.2e8_3e3_113e2.8t41.1c1 | $6$ | $ 2^{8} \cdot 3^{3} \cdot 113^{2}$ | $x^{8} - 4 x^{6} - 2 x^{5} + 6 x^{4} - 2 x^{3} + 3 x^{2} + 4 x + 1$ | $V_4^2:(S_3\times C_2)$ (as 8T41) | $1$ | $0$ |
| 6.2e8_3e3_113e4.12t111.1c1 | $6$ | $ 2^{8} \cdot 3^{3} \cdot 113^{4}$ | $x^{8} - 4 x^{6} - 2 x^{5} + 6 x^{4} - 2 x^{3} + 3 x^{2} + 4 x + 1$ | $V_4^2:(S_3\times C_2)$ (as 8T41) | $1$ | $0$ | |
| 6.2e10_3e4_113e3.12t108.1c1 | $6$ | $ 2^{10} \cdot 3^{4} \cdot 113^{3}$ | $x^{8} - 4 x^{6} - 2 x^{5} + 6 x^{4} - 2 x^{3} + 3 x^{2} + 4 x + 1$ | $V_4^2:(S_3\times C_2)$ (as 8T41) | $1$ | $-2$ |