Normalized defining polynomial
\( x^{8} - x^{7} - 8 x^{6} + 12 x^{5} - 4 x^{4} + 13 x^{3} + 642 x^{2} - 440 x + 281 \)
Invariants
| Degree: | $8$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 4]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(2576952773521=7^{4}\cdot 181^{4}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $35.59$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $7, 181$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $\frac{1}{14} a^{5} - \frac{1}{7} a^{4} + \frac{3}{14} a^{3} + \frac{3}{7} a^{2} + \frac{1}{14} a - \frac{1}{14}$, $\frac{1}{28} a^{6} - \frac{1}{28} a^{5} + \frac{1}{28} a^{4} - \frac{5}{28} a^{3} - \frac{1}{4} a^{2} - \frac{1}{28}$, $\frac{1}{1537592} a^{7} - \frac{257}{27457} a^{6} - \frac{2543}{192199} a^{5} + \frac{14585}{54914} a^{4} - \frac{39995}{192199} a^{3} - \frac{543667}{1537592} a^{2} + \frac{424687}{1537592} a + \frac{476799}{1537592}$
Class group and class number
Trivial group, which has order $1$
Unit group
| Rank: | $3$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 474.774181023 \) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$\SL(2,3)$ (as 8T12):
| A solvable group of order 24 |
| The 7 conjugacy class representatives for $\SL(2,3)$ |
| Character table for $\SL(2,3)$ |
Intermediate fields
| 4.4.1605289.2 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Galois closure: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.4.0.1}{4} }^{2}$ | ${\href{/LocalNumberField/3.4.0.1}{4} }^{2}$ | ${\href{/LocalNumberField/5.6.0.1}{6} }{,}\,{\href{/LocalNumberField/5.2.0.1}{2} }$ | R | ${\href{/LocalNumberField/11.4.0.1}{4} }^{2}$ | ${\href{/LocalNumberField/13.6.0.1}{6} }{,}\,{\href{/LocalNumberField/13.2.0.1}{2} }$ | ${\href{/LocalNumberField/17.6.0.1}{6} }{,}\,{\href{/LocalNumberField/17.2.0.1}{2} }$ | ${\href{/LocalNumberField/19.3.0.1}{3} }^{2}{,}\,{\href{/LocalNumberField/19.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/23.6.0.1}{6} }{,}\,{\href{/LocalNumberField/23.2.0.1}{2} }$ | ${\href{/LocalNumberField/29.4.0.1}{4} }^{2}$ | ${\href{/LocalNumberField/31.3.0.1}{3} }^{2}{,}\,{\href{/LocalNumberField/31.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/37.6.0.1}{6} }{,}\,{\href{/LocalNumberField/37.2.0.1}{2} }$ | ${\href{/LocalNumberField/41.3.0.1}{3} }^{2}{,}\,{\href{/LocalNumberField/41.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/43.3.0.1}{3} }^{2}{,}\,{\href{/LocalNumberField/43.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/47.4.0.1}{4} }^{2}$ | ${\href{/LocalNumberField/53.6.0.1}{6} }{,}\,{\href{/LocalNumberField/53.2.0.1}{2} }$ | ${\href{/LocalNumberField/59.3.0.1}{3} }^{2}{,}\,{\href{/LocalNumberField/59.1.0.1}{1} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $7$ | 7.2.0.1 | $x^{2} - x + 3$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ |
| 7.6.4.3 | $x^{6} + 56 x^{3} + 1323$ | $3$ | $2$ | $4$ | $C_6$ | $[\ ]_{3}^{2}$ | |
| $181$ | $\Q_{181}$ | $x + 2$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ |
| $\Q_{181}$ | $x + 2$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| 181.3.2.1 | $x^{3} - 181$ | $3$ | $1$ | $2$ | $C_3$ | $[\ ]_{3}$ | |
| 181.3.2.1 | $x^{3} - 181$ | $3$ | $1$ | $2$ | $C_3$ | $[\ ]_{3}$ |
Artin representations
| Label | Dimension | Conductor | Defining polynomial of Artin field | $G$ | Ind | $\chi(c)$ | |
|---|---|---|---|---|---|---|---|
| * | 1.1.1t1.1c1 | $1$ | $1$ | $x$ | $C_1$ | $1$ | $1$ |
| 1.7_181.3t1.2c1 | $1$ | $ 7 \cdot 181 $ | $x^{3} - x^{2} - 422 x + 3144$ | $C_3$ (as 3T1) | $0$ | $1$ | |
| 1.7_181.3t1.2c2 | $1$ | $ 7 \cdot 181 $ | $x^{3} - x^{2} - 422 x + 3144$ | $C_3$ (as 3T1) | $0$ | $1$ | |
| 2.7e2_181e2.24t7.1c1 | $2$ | $ 7^{2} \cdot 181^{2}$ | $x^{8} - x^{7} - 8 x^{6} + 12 x^{5} - 4 x^{4} + 13 x^{3} + 642 x^{2} - 440 x + 281$ | $\SL(2,3)$ (as 8T12) | $-1$ | $-2$ | |
| * | 2.7_181.8t12.1c1 | $2$ | $ 7 \cdot 181 $ | $x^{8} - x^{7} - 8 x^{6} + 12 x^{5} - 4 x^{4} + 13 x^{3} + 642 x^{2} - 440 x + 281$ | $\SL(2,3)$ (as 8T12) | $0$ | $-2$ |
| * | 2.7_181.8t12.1c2 | $2$ | $ 7 \cdot 181 $ | $x^{8} - x^{7} - 8 x^{6} + 12 x^{5} - 4 x^{4} + 13 x^{3} + 642 x^{2} - 440 x + 281$ | $\SL(2,3)$ (as 8T12) | $0$ | $-2$ |
| * | 3.7e2_181e2.4t4.2c1 | $3$ | $ 7^{2} \cdot 181^{2}$ | $x^{4} - x^{3} - 31 x^{2} - 42 x + 36$ | $A_4$ (as 4T4) | $1$ | $3$ |