Normalized defining polynomial
\( x^{8} - x^{7} + 881 x^{6} + 20093 x^{5} + 1109222 x^{4} - 5894476 x^{3} + 95433112 x^{2} + 5333705760 x + 33591285504 \)
Invariants
| Degree: | $8$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 4]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(25592429020084354212450313=37^{6}\cdot 193^{7}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $1499.73$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $37, 193$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois and abelian over $\Q$. | |||
| Conductor: | \(7141=37\cdot 193\) | ||
| Dirichlet character group: | $\lbrace$$\chi_{7141}(1,·)$, $\chi_{7141}(3817,·)$, $\chi_{7141}(43,·)$, $\chi_{7141}(7029,·)$, $\chi_{7141}(1849,·)$, $\chi_{7141}(5403,·)$, $\chi_{7141}(956,·)$, $\chi_{7141}(2325,·)$$\rbrace$ | ||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $\frac{1}{2} a^{2} - \frac{1}{2} a$, $\frac{1}{6} a^{3} - \frac{1}{6} a$, $\frac{1}{504} a^{4} - \frac{13}{252} a^{3} - \frac{85}{504} a^{2} - \frac{113}{252} a - \frac{1}{3}$, $\frac{1}{7056} a^{5} - \frac{1}{1764} a^{4} + \frac{39}{784} a^{3} - \frac{68}{441} a^{2} + \frac{605}{1764} a + \frac{1}{21}$, $\frac{1}{49392} a^{6} - \frac{1}{16464} a^{5} - \frac{5}{5488} a^{4} + \frac{2399}{49392} a^{3} - \frac{157}{12348} a^{2} + \frac{3433}{12348} a + \frac{50}{147}$, $\frac{1}{256189825332758016} a^{7} + \frac{2194183696549}{256189825332758016} a^{6} + \frac{11079999122095}{256189825332758016} a^{5} - \frac{165137207740937}{256189825332758016} a^{4} - \frac{64325263508693}{2287409154756768} a^{3} - \frac{112935201581}{3810760774272} a^{2} + \frac{329433957495715}{5337288027765792} a - \frac{8521100403055}{31769571593844}$
Class group and class number
$C_{11}\times C_{21919612}$, which has order $241115732$ (assuming GRH)
Unit group
| Rank: | $3$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 92656.6271982 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A cyclic group of order 8 |
| The 8 conjugacy class representatives for $C_8$ |
| Character table for $C_8$ |
Intermediate fields
| \(\Q(\sqrt{193}) \), 4.4.9841819033.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.1.0.1}{1} }^{8}$ | ${\href{/LocalNumberField/3.1.0.1}{1} }^{8}$ | ${\href{/LocalNumberField/5.8.0.1}{8} }$ | ${\href{/LocalNumberField/7.1.0.1}{1} }^{8}$ | ${\href{/LocalNumberField/11.8.0.1}{8} }$ | ${\href{/LocalNumberField/13.8.0.1}{8} }$ | ${\href{/LocalNumberField/17.8.0.1}{8} }$ | ${\href{/LocalNumberField/19.8.0.1}{8} }$ | ${\href{/LocalNumberField/23.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/29.8.0.1}{8} }$ | ${\href{/LocalNumberField/31.1.0.1}{1} }^{8}$ | R | ${\href{/LocalNumberField/41.8.0.1}{8} }$ | ${\href{/LocalNumberField/43.4.0.1}{4} }^{2}$ | ${\href{/LocalNumberField/47.8.0.1}{8} }$ | ${\href{/LocalNumberField/53.8.0.1}{8} }$ | ${\href{/LocalNumberField/59.4.0.1}{4} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $37$ | 37.8.6.3 | $x^{8} - 37 x^{4} + 6845$ | $4$ | $2$ | $6$ | $C_8$ | $[\ ]_{4}^{2}$ |
| $193$ | 193.8.7.2 | $x^{8} - 4825$ | $8$ | $1$ | $7$ | $C_8$ | $[\ ]_{8}$ |