Properties

Label 8.0.253417980818...7137.1
Degree $8$
Signature $[0, 4]$
Discriminant $149^{7}\cdot 397^{7}$
Root discriminant $14{,}978.89$
Ramified primes $149, 397$
Class number $2371637700$ (GRH)
Class group $[15, 158109180]$ (GRH)
Galois group $C_8:C_2$ (as 8T7)

Related objects

Downloads

Learn more about

Show commands for: Magma / SageMath / Pari/GP

magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![2313942927232, 273114940000, 4490819278, -3353508043, 162671589, -1733001, 3701, -3, 1]);
 
sage: x = polygen(QQ); K.<a> = NumberField(x^8 - 3*x^7 + 3701*x^6 - 1733001*x^5 + 162671589*x^4 - 3353508043*x^3 + 4490819278*x^2 + 273114940000*x + 2313942927232)
 
gp: K = bnfinit(x^8 - 3*x^7 + 3701*x^6 - 1733001*x^5 + 162671589*x^4 - 3353508043*x^3 + 4490819278*x^2 + 273114940000*x + 2313942927232, 1)
 

Normalized defining polynomial

\( x^{8} - 3 x^{7} + 3701 x^{6} - 1733001 x^{5} + 162671589 x^{4} - 3353508043 x^{3} + 4490819278 x^{2} + 273114940000 x + 2313942927232 \)

magma: DefiningPolynomial(K);
 
sage: K.defining_polynomial()
 
gp: K.pol
 

Invariants

Degree:  $8$
magma: Degree(K);
 
sage: K.degree()
 
gp: poldegree(K.pol)
 
Signature:  $[0, 4]$
magma: Signature(K);
 
sage: K.signature()
 
gp: K.sign
 
Discriminant:  \(2534179808189051984944868707137137=149^{7}\cdot 397^{7}\)
magma: Discriminant(Integers(K));
 
sage: K.disc()
 
gp: K.disc
 
Root discriminant:  $14{,}978.89$
magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
 
sage: (K.disc().abs())^(1./K.degree())
 
gp: abs(K.disc)^(1/poldegree(K.pol))
 
Ramified primes:  $149, 397$
magma: PrimeDivisors(Discriminant(Integers(K)));
 
sage: K.disc().support()
 
gp: factor(abs(K.disc))[,1]~
 
This field is not Galois over $\Q$.
This is a CM field.

Integral basis (with respect to field generator \(a\))

$1$, $a$, $a^{2}$, $a^{3}$, $\frac{1}{2} a^{4} - \frac{1}{2} a$, $\frac{1}{2} a^{5} - \frac{1}{2} a^{2}$, $\frac{1}{58} a^{6} - \frac{13}{58} a^{5} + \frac{5}{58} a^{4} + \frac{21}{58} a^{3} + \frac{7}{58} a^{2} + \frac{19}{58} a - \frac{13}{29}$, $\frac{1}{14502095603659707257627841112336768} a^{7} + \frac{15951113450581157793561113877093}{14502095603659707257627841112336768} a^{6} + \frac{2939665915154778606842252505037565}{14502095603659707257627841112336768} a^{5} - \frac{3424958123098725412650558376436225}{14502095603659707257627841112336768} a^{4} - \frac{1159291269374033835776269130044547}{14502095603659707257627841112336768} a^{3} - \frac{6934585431759322434303213578608515}{14502095603659707257627841112336768} a^{2} + \frac{1867588156474575517843520217591083}{7251047801829853628813920556168384} a - \frac{145661198055291789952519126637907}{906380975228731703601740069521048}$

magma: IntegralBasis(K);
 
sage: K.integral_basis()
 
gp: K.zk
 

Class group and class number

$C_{15}\times C_{158109180}$, which has order $2371637700$ (assuming GRH)

magma: ClassGroup(K);
 
sage: K.class_group().invariants()
 
gp: K.clgp
 

Unit group

magma: UK, f := UnitGroup(K);
 
sage: UK = K.unit_group()
 
Rank:  $3$
magma: UnitRank(K);
 
sage: UK.rank()
 
gp: K.fu
 
Torsion generator:  \( -1 \) (order $2$)
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
 
sage: UK.torsion_generator()
 
gp: K.tu[2]
 
Fundamental units:  Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH)
magma: [K!f(g): g in Generators(UK)];
 
sage: UK.fundamental_units()
 
gp: K.fu
 
Regulator:  \( 153947.598024 \) (assuming GRH)
magma: Regulator(K);
 
sage: K.regulator()
 
gp: K.reg
 

Galois group

$OD_{16}$ (as 8T7):

magma: GaloisGroup(K);
 
sage: K.galois_group(type='pari')
 
gp: polgalois(K.pol)
 
A solvable group of order 16
The 10 conjugacy class representatives for $C_8:C_2$
Character table for $C_8:C_2$

Intermediate fields

\(\Q(\sqrt{59153}) \), 4.4.206980925974577.2

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Sibling fields

Galois closure: data not computed

Frobenius cycle types

$p$ 2 3 5 7 11 13 17 19 23 29 31 37 41 43 47 53 59
Cycle type ${\href{/LocalNumberField/2.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/2.1.0.1}{1} }^{4}$ ${\href{/LocalNumberField/3.8.0.1}{8} }$ ${\href{/LocalNumberField/5.8.0.1}{8} }$ ${\href{/LocalNumberField/7.8.0.1}{8} }$ ${\href{/LocalNumberField/11.8.0.1}{8} }$ ${\href{/LocalNumberField/13.4.0.1}{4} }^{2}$ ${\href{/LocalNumberField/17.8.0.1}{8} }$ ${\href{/LocalNumberField/19.2.0.1}{2} }^{4}$ ${\href{/LocalNumberField/23.8.0.1}{8} }$ ${\href{/LocalNumberField/29.2.0.1}{2} }^{4}$ ${\href{/LocalNumberField/31.1.0.1}{1} }^{8}$ ${\href{/LocalNumberField/37.2.0.1}{2} }^{4}$ ${\href{/LocalNumberField/41.4.0.1}{4} }^{2}$ ${\href{/LocalNumberField/43.8.0.1}{8} }$ ${\href{/LocalNumberField/47.4.0.1}{4} }^{2}$ ${\href{/LocalNumberField/53.8.0.1}{8} }$ ${\href{/LocalNumberField/59.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/59.1.0.1}{1} }^{4}$

Cycle lengths which are repeated in a cycle type are indicated by exponents.

magma: p := 7; // to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
magma: idealfactors := Factorization(p*Integers(K)); // get the data
 
magma: [<primefactor[2], Valuation(Norm(primefactor[1]), p)> : primefactor in idealfactors];
 
sage: p = 7; # to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
sage: [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]
 
gp: p = 7; \\ to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
gp: idealfactors = idealprimedec(K, p); \\ get the data
 
gp: vector(length(idealfactors), j, [idealfactors[j][3], idealfactors[j][4]])
 

Local algebras for ramified primes

$p$LabelPolynomial $e$ $f$ $c$ Galois group Slope content
$149$149.8.7.4$x^{8} + 1192$$8$$1$$7$$C_8:C_2$$[\ ]_{8}^{2}$
397Data not computed