Normalized defining polynomial
\( x^{8} - 3 x^{7} + 3701 x^{6} - 1733001 x^{5} + 162671589 x^{4} - 3353508043 x^{3} + 4490819278 x^{2} + 273114940000 x + 2313942927232 \)
Invariants
| Degree: | $8$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 4]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(2534179808189051984944868707137137=149^{7}\cdot 397^{7}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $14{,}978.89$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $149, 397$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $\frac{1}{2} a^{4} - \frac{1}{2} a$, $\frac{1}{2} a^{5} - \frac{1}{2} a^{2}$, $\frac{1}{58} a^{6} - \frac{13}{58} a^{5} + \frac{5}{58} a^{4} + \frac{21}{58} a^{3} + \frac{7}{58} a^{2} + \frac{19}{58} a - \frac{13}{29}$, $\frac{1}{14502095603659707257627841112336768} a^{7} + \frac{15951113450581157793561113877093}{14502095603659707257627841112336768} a^{6} + \frac{2939665915154778606842252505037565}{14502095603659707257627841112336768} a^{5} - \frac{3424958123098725412650558376436225}{14502095603659707257627841112336768} a^{4} - \frac{1159291269374033835776269130044547}{14502095603659707257627841112336768} a^{3} - \frac{6934585431759322434303213578608515}{14502095603659707257627841112336768} a^{2} + \frac{1867588156474575517843520217591083}{7251047801829853628813920556168384} a - \frac{145661198055291789952519126637907}{906380975228731703601740069521048}$
Class group and class number
$C_{15}\times C_{158109180}$, which has order $2371637700$ (assuming GRH)
Unit group
| Rank: | $3$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 153947.598024 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 16 |
| The 10 conjugacy class representatives for $C_8:C_2$ |
| Character table for $C_8:C_2$ |
Intermediate fields
| \(\Q(\sqrt{59153}) \), 4.4.206980925974577.2 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Galois closure: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/2.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/3.8.0.1}{8} }$ | ${\href{/LocalNumberField/5.8.0.1}{8} }$ | ${\href{/LocalNumberField/7.8.0.1}{8} }$ | ${\href{/LocalNumberField/11.8.0.1}{8} }$ | ${\href{/LocalNumberField/13.4.0.1}{4} }^{2}$ | ${\href{/LocalNumberField/17.8.0.1}{8} }$ | ${\href{/LocalNumberField/19.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/23.8.0.1}{8} }$ | ${\href{/LocalNumberField/29.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/31.1.0.1}{1} }^{8}$ | ${\href{/LocalNumberField/37.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/41.4.0.1}{4} }^{2}$ | ${\href{/LocalNumberField/43.8.0.1}{8} }$ | ${\href{/LocalNumberField/47.4.0.1}{4} }^{2}$ | ${\href{/LocalNumberField/53.8.0.1}{8} }$ | ${\href{/LocalNumberField/59.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/59.1.0.1}{1} }^{4}$ |
Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $149$ | 149.8.7.4 | $x^{8} + 1192$ | $8$ | $1$ | $7$ | $C_8:C_2$ | $[\ ]_{8}^{2}$ |
| 397 | Data not computed | ||||||