Normalized defining polynomial
\( x^{8} - x^{7} + 7845 x^{6} - 405267 x^{5} + 66210090 x^{4} - 2848018388 x^{3} + 76480434632 x^{2} - 19422288907392 x + 816267426117248 \)
Invariants
| Degree: | $8$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 4]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(24969423926841105551040628528649=157^{6}\cdot 401^{7}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $8407.68$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $157, 401$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois and abelian over $\Q$. | |||
| Conductor: | \(62957=157\cdot 401\) | ||
| Dirichlet character group: | not computed | ||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $\frac{1}{2} a^{2} - \frac{1}{2} a$, $\frac{1}{2} a^{3} - \frac{1}{2} a$, $\frac{1}{112} a^{4} - \frac{1}{56} a^{3} - \frac{5}{112} a^{2} + \frac{3}{56} a - \frac{1}{2}$, $\frac{1}{224} a^{5} - \frac{9}{224} a^{3} - \frac{1}{56} a^{2} + \frac{17}{56} a - \frac{1}{2}$, $\frac{1}{448} a^{6} - \frac{1}{448} a^{5} - \frac{1}{448} a^{4} + \frac{101}{448} a^{3} + \frac{1}{14} a^{2} + \frac{51}{112} a + \frac{1}{4}$, $\frac{1}{128212994542769388552820077727232} a^{7} - \frac{59230773832074265522390925511}{128212994542769388552820077727232} a^{6} - \frac{261904072593017254380292379153}{128212994542769388552820077727232} a^{5} + \frac{340786335959616607622401853347}{128212994542769388552820077727232} a^{4} - \frac{2154015814609909284757527026689}{16026624317846173569102509715904} a^{3} + \frac{1769042848424107681764043309203}{32053248635692347138205019431808} a^{2} + \frac{34017285685844103111738052251}{71547429990384703433493346946} a + \frac{8765050854630074944198510497}{40884245708791259104853341112}$
Class group and class number
$C_{1047824020}$, which has order $1047824020$ (assuming GRH)
Unit group
| Rank: | $3$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 632238.89986 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A cyclic group of order 8 |
| The 8 conjugacy class representatives for $C_8$ |
| Character table for $C_8$ |
Intermediate fields
| \(\Q(\sqrt{401}) \), 4.4.1589397123449.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.1.0.1}{1} }^{8}$ | ${\href{/LocalNumberField/3.8.0.1}{8} }$ | ${\href{/LocalNumberField/5.4.0.1}{4} }^{2}$ | ${\href{/LocalNumberField/7.1.0.1}{1} }^{8}$ | ${\href{/LocalNumberField/11.4.0.1}{4} }^{2}$ | ${\href{/LocalNumberField/13.8.0.1}{8} }$ | ${\href{/LocalNumberField/17.8.0.1}{8} }$ | ${\href{/LocalNumberField/19.8.0.1}{8} }$ | ${\href{/LocalNumberField/23.8.0.1}{8} }$ | ${\href{/LocalNumberField/29.4.0.1}{4} }^{2}$ | ${\href{/LocalNumberField/31.8.0.1}{8} }$ | ${\href{/LocalNumberField/37.8.0.1}{8} }$ | ${\href{/LocalNumberField/41.4.0.1}{4} }^{2}$ | ${\href{/LocalNumberField/43.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/47.4.0.1}{4} }^{2}$ | ${\href{/LocalNumberField/53.8.0.1}{8} }$ | ${\href{/LocalNumberField/59.8.0.1}{8} }$ |
Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $157$ | 157.8.6.4 | $x^{8} + 2669 x^{4} + 5324184$ | $4$ | $2$ | $6$ | $C_8$ | $[\ ]_{4}^{2}$ |
| 401 | Data not computed | ||||||