Normalized defining polynomial
\( x^{8} + 24x^{6} + 180x^{4} + 432x^{2} + 49 \)
Invariants
Degree: | $8$ | sage: K.degree()
gp: poldegree(K.pol)
magma: Degree(K);
oscar: degree(K)
| |
Signature: | $[0, 4]$ | sage: K.signature()
gp: K.sign
magma: Signature(K);
oscar: signature(K)
| |
Discriminant: |
\(245635219456\)
\(\medspace = 2^{24}\cdot 11^{4}\)
| sage: K.disc()
gp: K.disc
magma: OK := Integers(K); Discriminant(OK);
oscar: OK = ring_of_integers(K); discriminant(OK)
| |
Root discriminant: | \(26.53\) | sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
magma: Abs(Discriminant(OK))^(1/Degree(K));
oscar: (1.0 * dK)^(1/degree(K))
| |
Galois root discriminant: | $2^{3}11^{1/2}\approx 26.5329983228432$ | ||
Ramified primes: |
\(2\), \(11\)
| sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
magma: PrimeDivisors(Discriminant(OK));
oscar: prime_divisors(discriminant((OK)))
| |
Discriminant root field: | \(\Q\) | ||
$\Aut(K/\Q)$ $=$ $\Gal(K/\Q)$: | $C_2\times C_4$ | sage: K.automorphisms()
magma: Automorphisms(K);
oscar: automorphisms(K)
| |
This field is Galois and abelian over $\Q$. | |||
Conductor: | \(176=2^{4}\cdot 11\) | ||
Dirichlet character group: | $\lbrace$$\chi_{176}(1,·)$, $\chi_{176}(67,·)$, $\chi_{176}(109,·)$, $\chi_{176}(175,·)$, $\chi_{176}(21,·)$, $\chi_{176}(87,·)$, $\chi_{176}(89,·)$, $\chi_{176}(155,·)$$\rbrace$ | ||
This is a CM field. | |||
Reflex fields: | 4.0.2048.2$^{2}$, 4.0.247808.2$^{2}$, 8.0.245635219456.1$^{4}$ |
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $\frac{1}{5}a^{4}+\frac{2}{5}a^{2}-\frac{2}{5}$, $\frac{1}{35}a^{5}-\frac{3}{35}a^{3}-\frac{12}{35}a$, $\frac{1}{35}a^{6}-\frac{3}{35}a^{4}-\frac{12}{35}a^{2}$, $\frac{1}{35}a^{7}+\frac{2}{5}a^{3}-\frac{1}{35}a$
Monogenic: | No | |
Index: | Not computed | |
Inessential primes: | $7$ |
Class group and class number
Ideal class group: | $C_{10}$, which has order $10$ sage: K.class_group().invariants()
gp: K.clgp
magma: ClassGroup(K);
oscar: class_group(K)
| |
Narrow class group: | $C_{10}$, which has order $10$ | |
Relative class number: | $10$ |
Unit group
Rank: | $3$ | sage: UK.rank()
gp: K.fu
magma: UnitRank(K);
oscar: rank(UK)
| |
Torsion generator: |
\( -1 \)
(order $2$)
| sage: UK.torsion_generator()
gp: K.tu[2]
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
oscar: torsion_units_generator(OK)
| |
Fundamental units: |
$\frac{1}{35}a^{6}+\frac{18}{35}a^{4}+\frac{13}{7}a^{2}-\frac{1}{5}$, $\frac{1}{35}a^{6}+\frac{18}{35}a^{4}+\frac{20}{7}a^{2}+\frac{24}{5}$, $\frac{1}{35}a^{7}+\frac{19}{35}a^{5}+\frac{97}{35}a^{3}+\frac{86}{35}a$
| sage: UK.fundamental_units()
gp: K.fu
magma: [K|fUK(g): g in Generators(UK)];
oscar: [K(fUK(a)) for a in gens(UK)]
| |
Regulator: | \( 63.0659142175 \) | sage: K.regulator()
gp: K.reg
magma: Regulator(K);
oscar: regulator(K)
|
Class number formula
\[ \begin{aligned}\lim_{s\to 1} (s-1)\zeta_K(s) =\mathstrut & \frac{2^{r_1}\cdot (2\pi)^{r_2}\cdot R\cdot h}{w\cdot\sqrt{|D|}}\cr \approx\mathstrut &\frac{2^{0}\cdot(2\pi)^{4}\cdot 63.0659142175 \cdot 10}{2\cdot\sqrt{245635219456}}\cr\approx \mathstrut & 0.991605336253 \end{aligned}\]
Galois group
$C_2\times C_4$ (as 8T2):
An abelian group of order 8 |
The 8 conjugacy class representatives for $C_4\times C_2$ |
Character table for $C_4\times C_2$ |
Intermediate fields
\(\Q(\sqrt{22}) \), \(\Q(\sqrt{2}) \), \(\Q(\sqrt{11}) \), \(\Q(\sqrt{2}, \sqrt{11})\), 4.0.247808.2, 4.0.2048.2 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
$p$ | $2$ | $3$ | $5$ | $7$ | $11$ | $13$ | $17$ | $19$ | $23$ | $29$ | $31$ | $37$ | $41$ | $43$ | $47$ | $53$ | $59$ |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Cycle type | R | ${\href{/padicField/3.4.0.1}{4} }^{2}$ | ${\href{/padicField/5.4.0.1}{4} }^{2}$ | ${\href{/padicField/7.1.0.1}{1} }^{8}$ | R | ${\href{/padicField/13.4.0.1}{4} }^{2}$ | ${\href{/padicField/17.2.0.1}{2} }^{4}$ | ${\href{/padicField/19.4.0.1}{4} }^{2}$ | ${\href{/padicField/23.2.0.1}{2} }^{4}$ | ${\href{/padicField/29.4.0.1}{4} }^{2}$ | ${\href{/padicField/31.2.0.1}{2} }^{4}$ | ${\href{/padicField/37.4.0.1}{4} }^{2}$ | ${\href{/padicField/41.2.0.1}{2} }^{4}$ | ${\href{/padicField/43.4.0.1}{4} }^{2}$ | ${\href{/padicField/47.2.0.1}{2} }^{4}$ | ${\href{/padicField/53.4.0.1}{4} }^{2}$ | ${\href{/padicField/59.4.0.1}{4} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
$p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
---|---|---|---|---|---|---|---|
\(2\)
| 2.1.8.24c1.61 | $x^{8} + 8 x^{7} + 4 x^{6} + 2 x^{4} + 8 x^{3} + 4 x^{2} + 8 x + 14$ | $8$ | $1$ | $24$ | $C_4\times C_2$ | $$[2, 3, 4]$$ |
\(11\)
| 11.4.2.4a1.2 | $x^{8} + 16 x^{6} + 20 x^{5} + 68 x^{4} + 160 x^{3} + 132 x^{2} + 40 x + 15$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $$[\ ]_{2}^{4}$$ |