Normalized defining polynomial
\( x^{8} + 9 x^{6} + 381 x^{4} - 2700 x^{2} + 90000 \)
Invariants
| Degree: | $8$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 4]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(24234777031689=3^{6}\cdot 7^{4}\cdot 61^{4}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $47.10$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $3, 7, 61$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $\frac{1}{2} a^{3} - \frac{1}{2} a^{2} - \frac{1}{2} a$, $\frac{1}{6} a^{4} - \frac{1}{2} a$, $\frac{1}{30} a^{5} - \frac{1}{5} a^{3} - \frac{1}{2} a^{2} + \frac{1}{5} a$, $\frac{1}{228600} a^{6} - \frac{1}{60} a^{5} - \frac{11}{600} a^{4} - \frac{3}{20} a^{3} - \frac{199}{600} a^{2} - \frac{7}{20} a - \frac{3}{254}$, $\frac{1}{2286000} a^{7} + \frac{89}{6000} a^{5} + \frac{101}{6000} a^{3} - \frac{223}{635} a - \frac{1}{2}$
Class group and class number
$C_{4}\times C_{4}$, which has order $16$
Unit group
| Rank: | $3$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( \frac{1}{12700} a^{6} + \frac{1}{300} a^{4} + \frac{3}{100} a^{2} + \frac{100}{127} \) (order $6$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | \( \frac{77}{1143000} a^{7} + \frac{3}{25400} a^{6} + \frac{1}{1000} a^{5} + \frac{1}{200} a^{4} + \frac{127}{3000} a^{3} + \frac{9}{200} a^{2} - \frac{1351}{2540} a - \frac{589}{254} \), \( \frac{317}{2286000} a^{7} - \frac{1}{6350} a^{6} + \frac{13}{6000} a^{5} - \frac{1}{150} a^{4} + \frac{217}{6000} a^{3} - \frac{3}{50} a^{2} - \frac{31}{1270} a + \frac{489}{254} \), \( \frac{18881}{57150} a^{6} - \frac{8591}{150} a^{4} + \frac{115081}{150} a^{2} - \frac{1204343}{127} \) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 1094.18288876 \) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 8 |
| The 5 conjugacy class representatives for $D_4$ |
| Character table for $D_4$ |
Intermediate fields
| \(\Q(\sqrt{-427}) \), \(\Q(\sqrt{-3}) \), \(\Q(\sqrt{1281}) \), \(\Q(\sqrt{-3}, \sqrt{-427})\), 4.0.11529.2 x2, 4.2.4922883.1 x2 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 4 siblings: | 4.2.4922883.1, 4.0.11529.2 |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.2.0.1}{2} }^{4}$ | R | ${\href{/LocalNumberField/5.2.0.1}{2} }^{4}$ | R | ${\href{/LocalNumberField/11.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/13.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/17.4.0.1}{4} }^{2}$ | ${\href{/LocalNumberField/19.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/23.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/29.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/31.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/37.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/41.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/43.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/47.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/53.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/59.4.0.1}{4} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $3$ | 3.8.6.2 | $x^{8} + 4 x^{7} + 14 x^{6} + 28 x^{5} + 43 x^{4} + 44 x^{3} + 110 x^{2} + 92 x + 22$ | $4$ | $2$ | $6$ | $D_4$ | $[\ ]_{4}^{2}$ |
| $7$ | 7.2.1.1 | $x^{2} - 7$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ |
| 7.2.1.1 | $x^{2} - 7$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 7.2.1.1 | $x^{2} - 7$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 7.2.1.1 | $x^{2} - 7$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| $61$ | 61.4.2.1 | $x^{4} + 183 x^{2} + 14884$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ |
| 61.4.2.1 | $x^{4} + 183 x^{2} + 14884$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ |
Artin representations
| Label | Dimension | Conductor | Defining polynomial of Artin field | $G$ | Ind | $\chi(c)$ | |
|---|---|---|---|---|---|---|---|
| * | 1.1.1t1.1c1 | $1$ | $1$ | $x$ | $C_1$ | $1$ | $1$ |
| * | 1.3_7_61.2t1.1c1 | $1$ | $ 3 \cdot 7 \cdot 61 $ | $x^{2} - x - 320$ | $C_2$ (as 2T1) | $1$ | $1$ |
| * | 1.3.2t1.1c1 | $1$ | $ 3 $ | $x^{2} - x + 1$ | $C_2$ (as 2T1) | $1$ | $-1$ |
| * | 1.7_61.2t1.1c1 | $1$ | $ 7 \cdot 61 $ | $x^{2} - x + 107$ | $C_2$ (as 2T1) | $1$ | $-1$ |
| *2 | 2.3e2_7_61.4t3.6c1 | $2$ | $ 3^{2} \cdot 7 \cdot 61 $ | $x^{8} + 9 x^{6} + 381 x^{4} - 2700 x^{2} + 90000$ | $D_4$ (as 8T4) | $1$ | $0$ |