Error: 2.2.1.d300000000 is not the label of a Sato-Tate group currently in the database.
Normalized defining polynomial
\( x^{8} - 4x^{7} + 16x^{6} - 22x^{5} + 9x^{4} + 58x^{3} - 50x^{2} + 64x + 154 \)
Invariants
| Degree: | $8$ |
| |
| Signature: | $[0, 4]$ |
| |
| Discriminant: |
\(234658861056\)
\(\medspace = 2^{12}\cdot 3^{4}\cdot 29^{4}\)
|
| |
| Root discriminant: | \(26.38\) |
| |
| Galois root discriminant: | $2^{3/2}3^{1/2}29^{1/2}\approx 26.38181191654584$ | ||
| Ramified primes: |
\(2\), \(3\), \(29\)
|
| |
| Discriminant root field: | \(\Q\) | ||
| $\Aut(K/\Q)$: | $C_2$ |
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
| Maximal CM subfield: | \(\Q(\sqrt{-87}) \) | ||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $\frac{1}{926329}a^{7}-\frac{120054}{926329}a^{6}-\frac{270195}{926329}a^{5}-\frac{352865}{926329}a^{4}+\frac{418089}{926329}a^{3}-\frac{300185}{926329}a^{2}+\frac{232113}{926329}a-\frac{262937}{926329}$
| Monogenic: | Not computed | |
| Index: | $1$ | |
| Inessential primes: | None |
Class group and class number
| Ideal class group: | $C_{6}$, which has order $6$ |
| |
| Narrow class group: | $C_{6}$, which has order $6$ |
|
Unit group
| Rank: | $3$ |
| |
| Torsion generator: |
\( -1 \)
(order $2$)
|
| |
| Fundamental units: |
$\frac{3449}{926329}a^{7}+\frac{2817}{926329}a^{6}-\frac{15581}{926329}a^{5}+\frac{164921}{926329}a^{4}-\frac{305292}{926329}a^{3}+\frac{297757}{926329}a^{2}+\frac{209481}{926329}a+\frac{932707}{926329}$, $\frac{5671}{926329}a^{7}+\frac{25581}{926329}a^{6}-\frac{127679}{926329}a^{5}+\frac{699554}{926329}a^{4}-\frac{1345850}{926329}a^{3}+\frac{1169896}{926329}a^{2}+\frac{925643}{926329}a+\frac{273963}{926329}$, $\frac{489582}{926329}a^{7}-\frac{1628707}{926329}a^{6}+\frac{5509671}{926329}a^{5}-\frac{3404562}{926329}a^{4}-\frac{10407293}{926329}a^{3}+\frac{25639379}{926329}a^{2}+\frac{20389600}{926329}a-\frac{9323481}{926329}$
|
| |
| Regulator: | \( 180.253086422 \) |
|
Class number formula
\[ \begin{aligned}\lim_{s\to 1} (s-1)\zeta_K(s) =\mathstrut & \frac{2^{r_1}\cdot (2\pi)^{r_2}\cdot R\cdot h}{w\cdot\sqrt{|D|}}\cr \approx\mathstrut &\frac{2^{0}\cdot(2\pi)^{4}\cdot 180.253086422 \cdot 6}{2\cdot\sqrt{234658861056}}\cr\approx \mathstrut & 1.73982256287 \end{aligned}\]
Galois group
| A solvable group of order 24 |
| The 5 conjugacy class representatives for $S_4$ |
| Character table for $S_4$ |
Intermediate fields
| \(\Q(\sqrt{-87}) \), 4.2.5568.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Galois closure: | deg 24 |
| Degree 4 sibling: | 4.2.5568.1 |
| Degree 6 siblings: | 6.2.484416.1, 6.0.42144192.2 |
| Degree 12 siblings: | deg 12, deg 12 |
| Minimal sibling: | 4.2.5568.1 |
Frobenius cycle types
| $p$ | $2$ | $3$ | $5$ | $7$ | $11$ | $13$ | $17$ | $19$ | $23$ | $29$ | $31$ | $37$ | $41$ | $43$ | $47$ | $53$ | $59$ |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | ${\href{/padicField/5.4.0.1}{4} }^{2}$ | ${\href{/padicField/7.3.0.1}{3} }^{2}{,}\,{\href{/padicField/7.1.0.1}{1} }^{2}$ | ${\href{/padicField/11.3.0.1}{3} }^{2}{,}\,{\href{/padicField/11.1.0.1}{1} }^{2}$ | ${\href{/padicField/13.3.0.1}{3} }^{2}{,}\,{\href{/padicField/13.1.0.1}{1} }^{2}$ | ${\href{/padicField/17.3.0.1}{3} }^{2}{,}\,{\href{/padicField/17.1.0.1}{1} }^{2}$ | ${\href{/padicField/19.4.0.1}{4} }^{2}$ | ${\href{/padicField/23.4.0.1}{4} }^{2}$ | R | ${\href{/padicField/31.4.0.1}{4} }^{2}$ | ${\href{/padicField/37.4.0.1}{4} }^{2}$ | ${\href{/padicField/41.2.0.1}{2} }^{4}$ | ${\href{/padicField/43.2.0.1}{2} }^{4}$ | ${\href{/padicField/47.3.0.1}{3} }^{2}{,}\,{\href{/padicField/47.1.0.1}{1} }^{2}$ | ${\href{/padicField/53.4.0.1}{4} }^{2}$ | ${\href{/padicField/59.2.0.1}{2} }^{4}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
|
\(2\)
| 2.1.4.6a2.1 | $x^{4} + 2 x^{3} + 2 x^{2} + 2$ | $4$ | $1$ | $6$ | $A_4$ | $$[2, 2]^{3}$$ |
| 2.1.4.6a2.1 | $x^{4} + 2 x^{3} + 2 x^{2} + 2$ | $4$ | $1$ | $6$ | $A_4$ | $$[2, 2]^{3}$$ | |
|
\(3\)
| 3.2.2.2a1.2 | $x^{4} + 4 x^{3} + 8 x^{2} + 8 x + 7$ | $2$ | $2$ | $2$ | $C_2^2$ | $$[\ ]_{2}^{2}$$ |
| 3.2.2.2a1.2 | $x^{4} + 4 x^{3} + 8 x^{2} + 8 x + 7$ | $2$ | $2$ | $2$ | $C_2^2$ | $$[\ ]_{2}^{2}$$ | |
|
\(29\)
| 29.1.2.1a1.2 | $x^{2} + 58$ | $2$ | $1$ | $1$ | $C_2$ | $$[\ ]_{2}$$ |
| 29.1.2.1a1.2 | $x^{2} + 58$ | $2$ | $1$ | $1$ | $C_2$ | $$[\ ]_{2}$$ | |
| 29.1.2.1a1.2 | $x^{2} + 58$ | $2$ | $1$ | $1$ | $C_2$ | $$[\ ]_{2}$$ | |
| 29.1.2.1a1.2 | $x^{2} + 58$ | $2$ | $1$ | $1$ | $C_2$ | $$[\ ]_{2}$$ |