Properties

Label 8.0.2304339180025.4
Degree $8$
Signature $[0, 4]$
Discriminant $5^{2}\cdot 19^{4}\cdot 29^{4}$
Root discriminant $35.10$
Ramified primes $5, 19, 29$
Class number $26$
Class group $[26]$
Galois group $(((C_4 \times C_2): C_2):C_2):C_2$ (as 8T29)

Related objects

Downloads

Learn more about

Show commands for: Magma / SageMath / Pari/GP

magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![480, -185, 173, 34, -41, 26, -4, -4, 1]);
 
sage: x = polygen(QQ); K.<a> = NumberField(x^8 - 4*x^7 - 4*x^6 + 26*x^5 - 41*x^4 + 34*x^3 + 173*x^2 - 185*x + 480)
 
gp: K = bnfinit(x^8 - 4*x^7 - 4*x^6 + 26*x^5 - 41*x^4 + 34*x^3 + 173*x^2 - 185*x + 480, 1)
 

Normalized defining polynomial

\( x^{8} - 4 x^{7} - 4 x^{6} + 26 x^{5} - 41 x^{4} + 34 x^{3} + 173 x^{2} - 185 x + 480 \)

magma: DefiningPolynomial(K);
 
sage: K.defining_polynomial()
 
gp: K.pol
 

Invariants

Degree:  $8$
magma: Degree(K);
 
sage: K.degree()
 
gp: poldegree(K.pol)
 
Signature:  $[0, 4]$
magma: Signature(K);
 
sage: K.signature()
 
gp: K.sign
 
Discriminant:  \(2304339180025=5^{2}\cdot 19^{4}\cdot 29^{4}\)
magma: Discriminant(Integers(K));
 
sage: K.disc()
 
gp: K.disc
 
Root discriminant:  $35.10$
magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
 
sage: (K.disc().abs())^(1./K.degree())
 
gp: abs(K.disc)^(1/poldegree(K.pol))
 
Ramified primes:  $5, 19, 29$
magma: PrimeDivisors(Discriminant(Integers(K)));
 
sage: K.disc().support()
 
gp: factor(abs(K.disc))[,1]~
 
This field is not Galois over $\Q$.
This is not a CM field.

Integral basis (with respect to field generator \(a\))

$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $\frac{1}{49} a^{6} - \frac{3}{49} a^{5} + \frac{20}{49} a^{4} + \frac{2}{7} a^{3} + \frac{23}{49} a^{2} - \frac{6}{49} a + \frac{4}{49}$, $\frac{1}{16317} a^{7} + \frac{163}{16317} a^{6} - \frac{5084}{16317} a^{5} - \frac{41}{441} a^{4} - \frac{655}{5439} a^{3} + \frac{2881}{16317} a^{2} - \frac{551}{16317} a + \frac{1234}{5439}$

magma: IntegralBasis(K);
 
sage: K.integral_basis()
 
gp: K.zk
 

Class group and class number

$C_{26}$, which has order $26$

magma: ClassGroup(K);
 
sage: K.class_group().invariants()
 
gp: K.clgp
 

Unit group

magma: UK, f := UnitGroup(K);
 
sage: UK = K.unit_group()
 
Rank:  $3$
magma: UnitRank(K);
 
sage: UK.rank()
 
gp: K.fu
 
Torsion generator:  \( -1 \) (order $2$)
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
 
sage: UK.torsion_generator()
 
gp: K.tu[2]
 
Fundamental units:  Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right
magma: [K!f(g): g in Generators(UK)];
 
sage: UK.fundamental_units()
 
gp: K.fu
 
Regulator:  \( 320.591102634 \)
magma: Regulator(K);
 
sage: K.regulator()
 
gp: K.reg
 

Galois group

$C_2\wr C_2^2$ (as 8T29):

magma: GaloisGroup(K);
 
sage: K.galois_group(type='pari')
 
gp: polgalois(K.pol)
 
A solvable group of order 64
The 16 conjugacy class representatives for $(((C_4 \times C_2): C_2):C_2):C_2$
Character table for $(((C_4 \times C_2): C_2):C_2):C_2$

Intermediate fields

\(\Q(\sqrt{-551}) \), 4.0.1518005.2

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Sibling fields

Degree 8 siblings: data not computed
Degree 16 siblings: data not computed
Degree 32 siblings: data not computed

Frobenius cycle types

$p$ 2 3 5 7 11 13 17 19 23 29 31 37 41 43 47 53 59
Cycle type ${\href{/LocalNumberField/2.4.0.1}{4} }{,}\,{\href{/LocalNumberField/2.2.0.1}{2} }{,}\,{\href{/LocalNumberField/2.1.0.1}{1} }^{2}$ ${\href{/LocalNumberField/3.4.0.1}{4} }{,}\,{\href{/LocalNumberField/3.2.0.1}{2} }{,}\,{\href{/LocalNumberField/3.1.0.1}{1} }^{2}$ R ${\href{/LocalNumberField/7.2.0.1}{2} }^{4}$ ${\href{/LocalNumberField/11.4.0.1}{4} }^{2}$ ${\href{/LocalNumberField/13.4.0.1}{4} }^{2}$ ${\href{/LocalNumberField/17.4.0.1}{4} }^{2}$ R ${\href{/LocalNumberField/23.2.0.1}{2} }^{4}$ R ${\href{/LocalNumberField/31.4.0.1}{4} }^{2}$ ${\href{/LocalNumberField/37.4.0.1}{4} }{,}\,{\href{/LocalNumberField/37.2.0.1}{2} }{,}\,{\href{/LocalNumberField/37.1.0.1}{1} }^{2}$ ${\href{/LocalNumberField/41.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/41.1.0.1}{1} }^{4}$ ${\href{/LocalNumberField/43.4.0.1}{4} }^{2}$ ${\href{/LocalNumberField/47.4.0.1}{4} }^{2}$ ${\href{/LocalNumberField/53.4.0.1}{4} }^{2}$ ${\href{/LocalNumberField/59.4.0.1}{4} }^{2}$

In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.

magma: p := 7; // to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
magma: idealfactors := Factorization(p*Integers(K)); // get the data
 
magma: [<primefactor[2], Valuation(Norm(primefactor[1]), p)> : primefactor in idealfactors];
 
sage: p = 7; # to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
sage: [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]
 
gp: p = 7; \\ to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
gp: idealfactors = idealprimedec(K, p); \\ get the data
 
gp: vector(length(idealfactors), j, [idealfactors[j][3], idealfactors[j][4]])
 

Local algebras for ramified primes

$p$LabelPolynomial $e$ $f$ $c$ Galois group Slope content
$5$5.2.1.2$x^{2} + 10$$2$$1$$1$$C_2$$[\ ]_{2}$
5.2.0.1$x^{2} - x + 2$$1$$2$$0$$C_2$$[\ ]^{2}$
5.2.1.2$x^{2} + 10$$2$$1$$1$$C_2$$[\ ]_{2}$
5.2.0.1$x^{2} - x + 2$$1$$2$$0$$C_2$$[\ ]^{2}$
$19$19.2.1.1$x^{2} - 19$$2$$1$$1$$C_2$$[\ ]_{2}$
19.2.1.1$x^{2} - 19$$2$$1$$1$$C_2$$[\ ]_{2}$
19.4.2.1$x^{4} + 57 x^{2} + 1444$$2$$2$$2$$C_2^2$$[\ ]_{2}^{2}$
$29$29.8.4.1$x^{8} + 31958 x^{4} - 24389 x^{2} + 255328441$$2$$4$$4$$C_4\times C_2$$[\ ]_{2}^{4}$

Artin representations

Label Dimension Conductor Defining polynomial of Artin field $G$ Ind $\chi(c)$
* 1.1.1t1.1c1$1$ $1$ $x$ $C_1$ $1$ $1$
1.5_19.2t1.1c1$1$ $ 5 \cdot 19 $ $x^{2} - x + 24$ $C_2$ (as 2T1) $1$ $-1$
1.5_29.2t1.1c1$1$ $ 5 \cdot 29 $ $x^{2} - x - 36$ $C_2$ (as 2T1) $1$ $1$
* 1.19_29.2t1.1c1$1$ $ 19 \cdot 29 $ $x^{2} - x + 138$ $C_2$ (as 2T1) $1$ $-1$
1.5_19_29.2t1.1c1$1$ $ 5 \cdot 19 \cdot 29 $ $x^{2} - x + 689$ $C_2$ (as 2T1) $1$ $-1$
1.29.2t1.1c1$1$ $ 29 $ $x^{2} - x - 7$ $C_2$ (as 2T1) $1$ $1$
1.19.2t1.1c1$1$ $ 19 $ $x^{2} - x + 5$ $C_2$ (as 2T1) $1$ $-1$
1.5.2t1.1c1$1$ $ 5 $ $x^{2} - x - 1$ $C_2$ (as 2T1) $1$ $1$
2.5_29.4t3.2c1$2$ $ 5 \cdot 29 $ $x^{4} - x^{3} - 3 x^{2} + x + 1$ $D_{4}$ (as 4T3) $1$ $2$
2.5_19e2_29.4t3.2c1$2$ $ 5 \cdot 19^{2} \cdot 29 $ $x^{4} - x^{3} + 52 x^{2} - 14 x + 671$ $D_{4}$ (as 4T3) $1$ $-2$
2.5_19_29.4t3.2c1$2$ $ 5 \cdot 19 \cdot 29 $ $x^{4} - x^{3} - 13 x - 31$ $D_{4}$ (as 4T3) $1$ $0$
2.5_19.4t3.1c1$2$ $ 5 \cdot 19 $ $x^{4} - 2 x^{3} + 2 x^{2} - x - 1$ $D_{4}$ (as 4T3) $1$ $0$
2.5_19_29e2.4t3.1c1$2$ $ 5 \cdot 19 \cdot 29^{2}$ $x^{4} - 2 x^{3} + 16 x^{2} - 15 x - 995$ $D_{4}$ (as 4T3) $1$ $0$
* 2.5_19_29.4t3.1c1$2$ $ 5 \cdot 19 \cdot 29 $ $x^{4} - x^{3} + 5 x^{2} + 12 x - 36$ $D_{4}$ (as 4T3) $1$ $0$
* 4.5_19e2_29e2.8t29.3c1$4$ $ 5 \cdot 19^{2} \cdot 29^{2}$ $x^{8} - 4 x^{7} - 4 x^{6} + 26 x^{5} - 41 x^{4} + 34 x^{3} + 173 x^{2} - 185 x + 480$ $(((C_4 \times C_2): C_2):C_2):C_2$ (as 8T29) $1$ $0$
4.5e3_19e2_29e2.8t29.3c1$4$ $ 5^{3} \cdot 19^{2} \cdot 29^{2}$ $x^{8} - 4 x^{7} - 4 x^{6} + 26 x^{5} - 41 x^{4} + 34 x^{3} + 173 x^{2} - 185 x + 480$ $(((C_4 \times C_2): C_2):C_2):C_2$ (as 8T29) $1$ $0$

Data is given for all irreducible representations of the Galois group for the Galois closure of this field. Those marked with * are summands in the permutation representation coming from this field. Representations which appear with multiplicity greater than one are indicated by exponents on the *.