Normalized defining polynomial
\( x^{8} - 2 x^{7} + 14 x^{6} - 14 x^{5} - 126 x^{4} + 630 x^{3} + 658 x^{2} - 5130 x + 10267 \)
Invariants
| Degree: | $8$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 4]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(226775649501184=2^{14}\cdot 7^{12}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $62.29$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 7$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $\frac{1}{26847444391} a^{7} - \frac{3241496060}{26847444391} a^{6} + \frac{659736697}{1413023389} a^{5} - \frac{8539178089}{26847444391} a^{4} + \frac{7541133610}{26847444391} a^{3} - \frac{2893722651}{26847444391} a^{2} - \frac{167708978}{26847444391} a - \frac{3957389386}{26847444391}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $3$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 24239.5513308 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 56 |
| The 8 conjugacy class representatives for $C_2^3:C_7$ |
| Character table for $C_2^3:C_7$ |
Intermediate fields
| The extension is primitive: there are no intermediate fields between this field and $\Q$. |
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/LocalNumberField/3.7.0.1}{7} }{,}\,{\href{/LocalNumberField/3.1.0.1}{1} }$ | ${\href{/LocalNumberField/5.7.0.1}{7} }{,}\,{\href{/LocalNumberField/5.1.0.1}{1} }$ | R | ${\href{/LocalNumberField/11.7.0.1}{7} }{,}\,{\href{/LocalNumberField/11.1.0.1}{1} }$ | ${\href{/LocalNumberField/13.7.0.1}{7} }{,}\,{\href{/LocalNumberField/13.1.0.1}{1} }$ | ${\href{/LocalNumberField/17.7.0.1}{7} }{,}\,{\href{/LocalNumberField/17.1.0.1}{1} }$ | ${\href{/LocalNumberField/19.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/23.7.0.1}{7} }{,}\,{\href{/LocalNumberField/23.1.0.1}{1} }$ | ${\href{/LocalNumberField/29.7.0.1}{7} }{,}\,{\href{/LocalNumberField/29.1.0.1}{1} }$ | ${\href{/LocalNumberField/31.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/37.7.0.1}{7} }{,}\,{\href{/LocalNumberField/37.1.0.1}{1} }$ | ${\href{/LocalNumberField/41.7.0.1}{7} }{,}\,{\href{/LocalNumberField/41.1.0.1}{1} }$ | ${\href{/LocalNumberField/43.7.0.1}{7} }{,}\,{\href{/LocalNumberField/43.1.0.1}{1} }$ | ${\href{/LocalNumberField/47.7.0.1}{7} }{,}\,{\href{/LocalNumberField/47.1.0.1}{1} }$ | ${\href{/LocalNumberField/53.7.0.1}{7} }{,}\,{\href{/LocalNumberField/53.1.0.1}{1} }$ | ${\href{/LocalNumberField/59.7.0.1}{7} }{,}\,{\href{/LocalNumberField/59.1.0.1}{1} }$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.8.14.6 | $x^{8} + 4 x^{7} + 4$ | $8$ | $1$ | $14$ | $C_2^3:C_7$ | $[2, 2, 2]^{7}$ |
| $7$ | $\Q_{7}$ | $x + 2$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ |
| 7.7.12.1 | $x^{7} - 7 x^{6} + 7$ | $7$ | $1$ | $12$ | $C_7$ | $[2]$ |
Artin representations
| Label | Dimension | Conductor | Defining polynomial of Artin field | $G$ | Ind | $\chi(c)$ | |
|---|---|---|---|---|---|---|---|
| * | 1.1.1t1.1c1 | $1$ | $1$ | $x$ | $C_1$ | $1$ | $1$ |
| 1.7e2.7t1.1c1 | $1$ | $ 7^{2}$ | $x^{7} - 21 x^{5} - 21 x^{4} + 91 x^{3} + 112 x^{2} - 84 x - 97$ | $C_7$ (as 7T1) | $0$ | $1$ | |
| 1.7e2.7t1.1c2 | $1$ | $ 7^{2}$ | $x^{7} - 21 x^{5} - 21 x^{4} + 91 x^{3} + 112 x^{2} - 84 x - 97$ | $C_7$ (as 7T1) | $0$ | $1$ | |
| 1.7e2.7t1.1c3 | $1$ | $ 7^{2}$ | $x^{7} - 21 x^{5} - 21 x^{4} + 91 x^{3} + 112 x^{2} - 84 x - 97$ | $C_7$ (as 7T1) | $0$ | $1$ | |
| 1.7e2.7t1.1c4 | $1$ | $ 7^{2}$ | $x^{7} - 21 x^{5} - 21 x^{4} + 91 x^{3} + 112 x^{2} - 84 x - 97$ | $C_7$ (as 7T1) | $0$ | $1$ | |
| 1.7e2.7t1.1c5 | $1$ | $ 7^{2}$ | $x^{7} - 21 x^{5} - 21 x^{4} + 91 x^{3} + 112 x^{2} - 84 x - 97$ | $C_7$ (as 7T1) | $0$ | $1$ | |
| 1.7e2.7t1.1c6 | $1$ | $ 7^{2}$ | $x^{7} - 21 x^{5} - 21 x^{4} + 91 x^{3} + 112 x^{2} - 84 x - 97$ | $C_7$ (as 7T1) | $0$ | $1$ | |
| * | 7.2e14_7e12.8t25.2c1 | $7$ | $ 2^{14} \cdot 7^{12}$ | $x^{8} - 2 x^{7} + 14 x^{6} - 14 x^{5} - 126 x^{4} + 630 x^{3} + 658 x^{2} - 5130 x + 10267$ | $C_2^3:C_7$ (as 8T25) | $1$ | $-1$ |