Normalized defining polynomial
\( x^{8} - 4 x^{7} + 38 x^{6} - 68 x^{5} + 402 x^{4} - 226 x^{3} + 1921 x^{2} + 4913 \)
Invariants
| Degree: | $8$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 4]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(2244455908224721=6883^{4}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $82.96$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $6883$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $\frac{1}{2} a^{4} - \frac{1}{2} a - \frac{1}{2}$, $\frac{1}{2} a^{5} - \frac{1}{2} a^{2} - \frac{1}{2} a$, $\frac{1}{306} a^{6} + \frac{47}{306} a^{5} + \frac{55}{306} a^{4} + \frac{7}{18} a^{3} - \frac{20}{153} a^{2} + \frac{2}{51} a + \frac{7}{18}$, $\frac{1}{5202} a^{7} - \frac{2}{2601} a^{6} - \frac{559}{2601} a^{5} + \frac{13}{306} a^{4} + \frac{1847}{5202} a^{3} - \frac{141}{289} a^{2} - \frac{37}{153} a + \frac{1}{3}$
Class group and class number
$C_{2}\times C_{18}$, which has order $36$ (assuming GRH)
Unit group
| Rank: | $3$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 475.630777769 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_2^2:S_4$ (as 8T34):
| A solvable group of order 96 |
| The 10 conjugacy class representatives for $V_4^2:S_3$ |
| Character table for $V_4^2:S_3$ |
Intermediate fields
| \(\Q(\sqrt{-6883}) \) |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 12 siblings: | data not computed |
| Degree 16 sibling: | data not computed |
| Degree 24 siblings: | data not computed |
| Degree 32 sibling: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.4.0.1}{4} }^{2}$ | ${\href{/LocalNumberField/3.4.0.1}{4} }^{2}$ | ${\href{/LocalNumberField/5.4.0.1}{4} }^{2}$ | ${\href{/LocalNumberField/7.4.0.1}{4} }^{2}$ | ${\href{/LocalNumberField/11.3.0.1}{3} }^{2}{,}\,{\href{/LocalNumberField/11.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/13.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/17.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/17.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/19.4.0.1}{4} }^{2}$ | ${\href{/LocalNumberField/23.4.0.1}{4} }^{2}$ | ${\href{/LocalNumberField/29.4.0.1}{4} }^{2}$ | ${\href{/LocalNumberField/31.4.0.1}{4} }^{2}$ | ${\href{/LocalNumberField/37.3.0.1}{3} }^{2}{,}\,{\href{/LocalNumberField/37.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/41.3.0.1}{3} }^{2}{,}\,{\href{/LocalNumberField/41.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/43.3.0.1}{3} }^{2}{,}\,{\href{/LocalNumberField/43.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/47.4.0.1}{4} }^{2}$ | ${\href{/LocalNumberField/53.3.0.1}{3} }^{2}{,}\,{\href{/LocalNumberField/53.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/59.3.0.1}{3} }^{2}{,}\,{\href{/LocalNumberField/59.1.0.1}{1} }^{2}$ |
Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 6883 | Data not computed | ||||||
Artin representations
| Label | Dimension | Conductor | Defining polynomial of Artin field | $G$ | Ind | $\chi(c)$ | |
|---|---|---|---|---|---|---|---|
| * | 1.1.1t1.1c1 | $1$ | $1$ | $x$ | $C_1$ | $1$ | $1$ |
| * | 1.6883.2t1.1c1 | $1$ | $ 6883 $ | $x^{2} - x + 1721$ | $C_2$ (as 2T1) | $1$ | $-1$ |
| 2.6883.3t2.1c1 | $2$ | $ 6883 $ | $x^{3} - x^{2} - 19 x - 30$ | $S_3$ (as 3T2) | $1$ | $0$ | |
| 3.6883.4t5.3c1 | $3$ | $ 6883 $ | $x^{4} - x^{3} - 2 x^{2} - 2 x + 5$ | $S_4$ (as 4T5) | $1$ | $1$ | |
| 3.6883.4t5.1c1 | $3$ | $ 6883 $ | $x^{4} - x^{3} - 5 x^{2} - x + 3$ | $S_4$ (as 4T5) | $1$ | $1$ | |
| 3.6883.4t5.2c1 | $3$ | $ 6883 $ | $x^{4} - 2 x^{3} - 2 x^{2} + x + 4$ | $S_4$ (as 4T5) | $1$ | $1$ | |
| 3.6883e2.6t8.3c1 | $3$ | $ 6883^{2}$ | $x^{4} - x^{3} - 2 x^{2} - 2 x + 5$ | $S_4$ (as 4T5) | $1$ | $-1$ | |
| 3.6883e2.6t8.2c1 | $3$ | $ 6883^{2}$ | $x^{4} - 2 x^{3} - 2 x^{2} + x + 4$ | $S_4$ (as 4T5) | $1$ | $-1$ | |
| 3.6883e2.6t8.1c1 | $3$ | $ 6883^{2}$ | $x^{4} - x^{3} - 5 x^{2} - x + 3$ | $S_4$ (as 4T5) | $1$ | $-1$ | |
| * | 6.6883e3.8t34.1c1 | $6$ | $ 6883^{3}$ | $x^{8} - 4 x^{7} + 38 x^{6} - 68 x^{5} + 402 x^{4} - 226 x^{3} + 1921 x^{2} + 4913$ | $V_4^2:S_3$ (as 8T34) | $1$ | $0$ |