Normalized defining polynomial
\( x^{8} + 32 x^{6} + 1686 x^{4} + 34975 x^{2} + 511225 \)
Invariants
| Degree: | $8$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 4]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(21400478835450625=5^{4}\cdot 41^{4}\cdot 59^{4}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $109.98$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $5, 41, 59$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $\frac{1}{94} a^{4} - \frac{18}{47} a^{2} - \frac{1}{2} a + \frac{17}{94}$, $\frac{1}{94} a^{5} - \frac{18}{47} a^{3} - \frac{1}{2} a^{2} + \frac{17}{94} a$, $\frac{1}{22090} a^{6} + \frac{46}{11045} a^{4} - \frac{1}{2} a^{3} - \frac{3839}{22090} a^{2} - \frac{760}{2209}$, $\frac{1}{3158870} a^{7} + \frac{2161}{1579435} a^{5} + \frac{1169281}{3158870} a^{3} - \frac{7019}{631774} a - \frac{1}{2}$
Class group and class number
$C_{2}\times C_{12}\times C_{96}$, which has order $2304$
Unit group
| Rank: | $3$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 79.2931662886 \) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 8 |
| The 5 conjugacy class representatives for $D_4$ |
| Character table for $D_4$ |
Intermediate fields
| \(\Q(\sqrt{-12095}) \), \(\Q(\sqrt{5}) \), \(\Q(\sqrt{-2419}) \), \(\Q(\sqrt{5}, \sqrt{-2419})\), 4.2.60475.2 x2, 4.0.29257805.1 x2 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 4 siblings: | 4.2.60475.2, 4.0.29257805.1 |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.4.0.1}{4} }^{2}$ | ${\href{/LocalNumberField/3.4.0.1}{4} }^{2}$ | R | ${\href{/LocalNumberField/7.4.0.1}{4} }^{2}$ | ${\href{/LocalNumberField/11.1.0.1}{1} }^{8}$ | ${\href{/LocalNumberField/13.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/17.4.0.1}{4} }^{2}$ | ${\href{/LocalNumberField/19.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/23.4.0.1}{4} }^{2}$ | ${\href{/LocalNumberField/29.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/31.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/37.4.0.1}{4} }^{2}$ | R | ${\href{/LocalNumberField/43.4.0.1}{4} }^{2}$ | ${\href{/LocalNumberField/47.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/53.4.0.1}{4} }^{2}$ | R |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $5$ | 5.2.1.1 | $x^{2} - 5$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ |
| 5.2.1.1 | $x^{2} - 5$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 5.2.1.1 | $x^{2} - 5$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 5.2.1.1 | $x^{2} - 5$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| $41$ | 41.2.1.1 | $x^{2} - 41$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ |
| 41.2.1.1 | $x^{2} - 41$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 41.2.1.1 | $x^{2} - 41$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 41.2.1.1 | $x^{2} - 41$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| $59$ | 59.2.1.2 | $x^{2} + 177$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ |
| 59.2.1.2 | $x^{2} + 177$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 59.2.1.2 | $x^{2} + 177$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 59.2.1.2 | $x^{2} + 177$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ |
Artin representations
| Label | Dimension | Conductor | Defining polynomial of Artin field | $G$ | Ind | $\chi(c)$ | |
|---|---|---|---|---|---|---|---|
| * | 1.1.1t1.1c1 | $1$ | $1$ | $x$ | $C_1$ | $1$ | $1$ |
| * | 1.41_59.2t1.1c1 | $1$ | $ 41 \cdot 59 $ | $x^{2} - x + 605$ | $C_2$ (as 2T1) | $1$ | $-1$ |
| * | 1.5.2t1.1c1 | $1$ | $ 5 $ | $x^{2} - x - 1$ | $C_2$ (as 2T1) | $1$ | $1$ |
| * | 1.5_41_59.2t1.1c1 | $1$ | $ 5 \cdot 41 \cdot 59 $ | $x^{2} - x + 3024$ | $C_2$ (as 2T1) | $1$ | $-1$ |
| *2 | 2.5_41_59.4t3.18c1 | $2$ | $ 5 \cdot 41 \cdot 59 $ | $x^{8} + 32 x^{6} + 1686 x^{4} + 34975 x^{2} + 511225$ | $D_4$ (as 8T4) | $1$ | $0$ |