Normalized defining polynomial
\( x^{8} - 3 x^{6} + 9 x^{4} - 4 x^{2} + 1 \)
Invariants
| Degree: | $8$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 4]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(20025646144=2^{6}\cdot 7^{4}\cdot 19^{4}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $19.40$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 7, 19$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $\frac{1}{2} a^{7} - \frac{1}{2} a^{6} - \frac{1}{2} a^{3} - \frac{1}{2} a^{2} - \frac{1}{2} a - \frac{1}{2}$
Class group and class number
$C_{4}$, which has order $4$
Unit group
| Rank: | $3$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | \( a^{7} - 3 a^{5} + 9 a^{3} - 4 a \), \( \frac{1}{2} a^{7} + \frac{1}{2} a^{6} - a^{5} - a^{4} + \frac{7}{2} a^{3} + \frac{7}{2} a^{2} + \frac{3}{2} a + \frac{1}{2} \), \( \frac{3}{2} a^{7} + \frac{1}{2} a^{6} - 4 a^{5} - 2 a^{4} + \frac{25}{2} a^{3} + \frac{11}{2} a^{2} - \frac{7}{2} a - \frac{5}{2} \) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 25.7973960594 \) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_2^3:A_4$ (as 8T32):
| A solvable group of order 96 |
| The 11 conjugacy class representatives for $((C_2 \times D_4): C_2):C_3$ |
| Character table for $((C_2 \times D_4): C_2):C_3$ |
Intermediate fields
| 4.0.17689.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 8 siblings: | data not computed |
| Degree 24 siblings: | data not computed |
| Degree 32 sibling: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/LocalNumberField/3.6.0.1}{6} }{,}\,{\href{/LocalNumberField/3.2.0.1}{2} }$ | ${\href{/LocalNumberField/5.6.0.1}{6} }{,}\,{\href{/LocalNumberField/5.2.0.1}{2} }$ | R | ${\href{/LocalNumberField/11.4.0.1}{4} }^{2}$ | ${\href{/LocalNumberField/13.6.0.1}{6} }{,}\,{\href{/LocalNumberField/13.2.0.1}{2} }$ | ${\href{/LocalNumberField/17.3.0.1}{3} }^{2}{,}\,{\href{/LocalNumberField/17.1.0.1}{1} }^{2}$ | R | ${\href{/LocalNumberField/23.3.0.1}{3} }^{2}{,}\,{\href{/LocalNumberField/23.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/29.3.0.1}{3} }^{2}{,}\,{\href{/LocalNumberField/29.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/31.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/37.4.0.1}{4} }^{2}$ | ${\href{/LocalNumberField/41.6.0.1}{6} }{,}\,{\href{/LocalNumberField/41.2.0.1}{2} }$ | ${\href{/LocalNumberField/43.6.0.1}{6} }{,}\,{\href{/LocalNumberField/43.2.0.1}{2} }$ | ${\href{/LocalNumberField/47.3.0.1}{3} }^{2}{,}\,{\href{/LocalNumberField/47.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/53.6.0.1}{6} }{,}\,{\href{/LocalNumberField/53.2.0.1}{2} }$ | ${\href{/LocalNumberField/59.3.0.1}{3} }^{2}{,}\,{\href{/LocalNumberField/59.1.0.1}{1} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.2.0.1 | $x^{2} - x + 1$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ |
| 2.6.6.2 | $x^{6} - x^{4} - 5$ | $2$ | $3$ | $6$ | $A_4\times C_2$ | $[2, 2]^{6}$ | |
| $7$ | 7.2.1.1 | $x^{2} - 7$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ |
| 7.2.1.1 | $x^{2} - 7$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 7.4.2.1 | $x^{4} + 35 x^{2} + 441$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| $19$ | $\Q_{19}$ | $x + 4$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ |
| $\Q_{19}$ | $x + 4$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| 19.3.2.2 | $x^{3} - 19$ | $3$ | $1$ | $2$ | $C_3$ | $[\ ]_{3}$ | |
| 19.3.2.2 | $x^{3} - 19$ | $3$ | $1$ | $2$ | $C_3$ | $[\ ]_{3}$ |
Artin representations
| Label | Dimension | Conductor | Defining polynomial of Artin field | $G$ | Ind | $\chi(c)$ | |
|---|---|---|---|---|---|---|---|
| * | 1.1.1t1.1c1 | $1$ | $1$ | $x$ | $C_1$ | $1$ | $1$ |
| 1.19.3t1.1c1 | $1$ | $ 19 $ | $x^{3} - x^{2} - 6 x + 7$ | $C_3$ (as 3T1) | $0$ | $1$ | |
| 1.19.3t1.1c2 | $1$ | $ 19 $ | $x^{3} - x^{2} - 6 x + 7$ | $C_3$ (as 3T1) | $0$ | $1$ | |
| 3.2e6_7e2_19e2.4t4.1c1 | $3$ | $ 2^{6} \cdot 7^{2} \cdot 19^{2}$ | $x^{4} - 30 x^{2} - 56 x + 1$ | $A_4$ (as 4T4) | $1$ | $3$ | |
| 3.2e6_7e2_19e2.4t4.3c1 | $3$ | $ 2^{6} \cdot 7^{2} \cdot 19^{2}$ | $x^{4} - 2 x^{3} + 6 x^{2} + 2 x + 15$ | $A_4$ (as 4T4) | $1$ | $-1$ | |
| 3.2e6_19e2.4t4.1c1 | $3$ | $ 2^{6} \cdot 19^{2}$ | $x^{4} - 2 x^{3} + 10 x^{2} - 8 x + 2$ | $A_4$ (as 4T4) | $1$ | $-1$ | |
| 3.2e6_7e2_19e2.4t4.6c1 | $3$ | $ 2^{6} \cdot 7^{2} \cdot 19^{2}$ | $x^{4} - 2 x^{3} + 14 x^{2} - 6 x + 107$ | $A_4$ (as 4T4) | $1$ | $-1$ | |
| * | 3.7e2_19e2.4t4.1c1 | $3$ | $ 7^{2} \cdot 19^{2}$ | $x^{4} + 3 x^{2} - 7 x + 4$ | $A_4$ (as 4T4) | $1$ | $-1$ |
| * | 4.2e6_7e2_19e2.8t32.2c1 | $4$ | $ 2^{6} \cdot 7^{2} \cdot 19^{2}$ | $x^{8} - 3 x^{6} + 9 x^{4} - 4 x^{2} + 1$ | $((C_2 \times D_4): C_2):C_3$ (as 8T32) | $1$ | $0$ |
| 4.2e6_7e2_19e3.24t97.2c1 | $4$ | $ 2^{6} \cdot 7^{2} \cdot 19^{3}$ | $x^{8} - 3 x^{6} + 9 x^{4} - 4 x^{2} + 1$ | $((C_2 \times D_4): C_2):C_3$ (as 8T32) | $0$ | $0$ | |
| 4.2e6_7e2_19e3.24t97.2c2 | $4$ | $ 2^{6} \cdot 7^{2} \cdot 19^{3}$ | $x^{8} - 3 x^{6} + 9 x^{4} - 4 x^{2} + 1$ | $((C_2 \times D_4): C_2):C_3$ (as 8T32) | $0$ | $0$ |