Normalized defining polynomial
\( x^{8} - x^{7} + 7444 x^{6} + 780490 x^{5} + 51900405 x^{4} + 2217754863 x^{3} + 234821135222 x^{2} + 20637311571272 x + 532351922168960 \)
Invariants
| Degree: | $8$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 4]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(18244342591747163638870188429401=149^{6}\cdot 401^{7}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $8084.27$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $149, 401$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois and abelian over $\Q$. | |||
| Conductor: | \(59749=149\cdot 401\) | ||
| Dirichlet character group: | not computed | ||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $\frac{1}{2} a^{2} - \frac{1}{2} a$, $\frac{1}{10} a^{3} + \frac{1}{10} a$, $\frac{1}{40} a^{4} - \frac{1}{20} a^{3} - \frac{9}{40} a^{2} + \frac{9}{20} a$, $\frac{1}{200} a^{5} + \frac{7}{200} a^{3} - \frac{1}{10} a^{2} - \frac{11}{50} a + \frac{2}{5}$, $\frac{1}{308000} a^{6} - \frac{71}{44000} a^{5} + \frac{111}{44000} a^{4} - \frac{1039}{308000} a^{3} - \frac{14717}{154000} a^{2} + \frac{6663}{19250} a - \frac{361}{1925}$, $\frac{1}{35366593801137687630665200000} a^{7} + \frac{6887907541835429301403}{17683296900568843815332600000} a^{6} - \frac{4859755848183960276887651}{2526185271509834830761800000} a^{5} + \frac{10698157890866271542954623}{8841648450284421907666300000} a^{4} - \frac{911920721412258904235379551}{35366593801137687630665200000} a^{3} + \frac{589252676095668587829501729}{2526185271509834830761800000} a^{2} - \frac{66906699897020861077280081}{631546317877458707690450000} a + \frac{10747000933090813679828048}{55260302814277636922914375}$
Class group and class number
$C_{2}\times C_{2}\times C_{745336820}$, which has order $2981347280$ (assuming GRH)
Unit group
| Rank: | $3$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 1216671.1794 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A cyclic group of order 8 |
| The 8 conjugacy class representatives for $C_8$ |
| Character table for $C_8$ |
Intermediate fields
| \(\Q(\sqrt{401}) \), 4.4.1431547143401.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.1.0.1}{1} }^{8}$ | ${\href{/LocalNumberField/3.8.0.1}{8} }$ | ${\href{/LocalNumberField/5.1.0.1}{1} }^{8}$ | ${\href{/LocalNumberField/7.4.0.1}{4} }^{2}$ | ${\href{/LocalNumberField/11.1.0.1}{1} }^{8}$ | ${\href{/LocalNumberField/13.8.0.1}{8} }$ | ${\href{/LocalNumberField/17.8.0.1}{8} }$ | ${\href{/LocalNumberField/19.8.0.1}{8} }$ | ${\href{/LocalNumberField/23.8.0.1}{8} }$ | ${\href{/LocalNumberField/29.1.0.1}{1} }^{8}$ | ${\href{/LocalNumberField/31.8.0.1}{8} }$ | ${\href{/LocalNumberField/37.8.0.1}{8} }$ | ${\href{/LocalNumberField/41.4.0.1}{4} }^{2}$ | ${\href{/LocalNumberField/43.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/47.4.0.1}{4} }^{2}$ | ${\href{/LocalNumberField/53.8.0.1}{8} }$ | ${\href{/LocalNumberField/59.8.0.1}{8} }$ |
Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $149$ | 149.4.3.1 | $x^{4} - 149$ | $4$ | $1$ | $3$ | $C_4$ | $[\ ]_{4}$ |
| 149.4.3.1 | $x^{4} - 149$ | $4$ | $1$ | $3$ | $C_4$ | $[\ ]_{4}$ | |
| 401 | Data not computed | ||||||