Normalized defining polynomial
\( x^{8} - 3 x^{7} + 14 x^{6} - 27 x^{5} + 66 x^{4} - 57 x^{3} + 116 x^{2} + 6 x + 13 \)
Invariants
| Degree: | $8$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 4]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(1809375813=3^{6}\cdot 7^{2}\cdot 37^{3}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $14.36$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $3, 7, 37$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $\frac{1}{37} a^{6} + \frac{11}{37} a^{5} - \frac{1}{37} a^{4} - \frac{13}{37} a^{3} + \frac{16}{37} a^{2} - \frac{4}{37} a - \frac{17}{37}$, $\frac{1}{5587} a^{7} + \frac{51}{5587} a^{6} - \frac{856}{5587} a^{5} - \frac{2310}{5587} a^{4} + \frac{1864}{5587} a^{3} + \frac{2449}{5587} a^{2} + \frac{1747}{5587} a + \frac{2687}{5587}$
Class group and class number
$C_{2}$, which has order $2$
Unit group
| Rank: | $3$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -\frac{121}{5587} a^{7} + \frac{473}{5587} a^{6} - \frac{2124}{5587} a^{5} + \frac{4690}{5587} a^{4} - \frac{10218}{5587} a^{3} + \frac{11107}{5587} a^{2} - \frac{14483}{5587} a + \frac{3298}{5587} \) (order $6$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 43.5848861293 \) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_8:C_2^2$ (as 8T15):
| A solvable group of order 32 |
| The 11 conjugacy class representatives for $Z_8 : Z_8^\times$ |
| Character table for $Z_8 : Z_8^\times$ |
Intermediate fields
| \(\Q(\sqrt{-3}) \), 4.0.333.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Galois closure: | data not computed |
| Degree 16 siblings: | data not computed |
| Arithmetically equvalently sibling: | 8.0.1809375813.1 |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.8.0.1}{8} }$ | R | ${\href{/LocalNumberField/5.8.0.1}{8} }$ | R | ${\href{/LocalNumberField/11.4.0.1}{4} }^{2}$ | ${\href{/LocalNumberField/13.2.0.1}{2} }^{3}{,}\,{\href{/LocalNumberField/13.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/17.8.0.1}{8} }$ | ${\href{/LocalNumberField/19.2.0.1}{2} }^{3}{,}\,{\href{/LocalNumberField/19.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/23.8.0.1}{8} }$ | ${\href{/LocalNumberField/29.8.0.1}{8} }$ | ${\href{/LocalNumberField/31.2.0.1}{2} }^{3}{,}\,{\href{/LocalNumberField/31.1.0.1}{1} }^{2}$ | R | ${\href{/LocalNumberField/41.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/43.2.0.1}{2} }^{3}{,}\,{\href{/LocalNumberField/43.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/47.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/53.4.0.1}{4} }^{2}$ | ${\href{/LocalNumberField/59.8.0.1}{8} }$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $3$ | 3.4.3.1 | $x^{4} + 3$ | $4$ | $1$ | $3$ | $D_{4}$ | $[\ ]_{4}^{2}$ |
| 3.4.3.1 | $x^{4} + 3$ | $4$ | $1$ | $3$ | $D_{4}$ | $[\ ]_{4}^{2}$ | |
| $7$ | 7.4.0.1 | $x^{4} + x^{2} - 3 x + 5$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ |
| 7.4.2.2 | $x^{4} - 7 x^{2} + 147$ | $2$ | $2$ | $2$ | $C_4$ | $[\ ]_{2}^{2}$ | |
| $37$ | $\Q_{37}$ | $x + 2$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ |
| $\Q_{37}$ | $x + 2$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| 37.2.1.1 | $x^{2} - 37$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 37.2.1.1 | $x^{2} - 37$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 37.2.1.1 | $x^{2} - 37$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ |
Artin representations
| Label | Dimension | Conductor | Defining polynomial of Artin field | $G$ | Ind | $\chi(c)$ | |
|---|---|---|---|---|---|---|---|
| * | 1.1.1t1.1c1 | $1$ | $1$ | $x$ | $C_1$ | $1$ | $1$ |
| 1.7_37.2t1.1c1 | $1$ | $ 7 \cdot 37 $ | $x^{2} - x + 65$ | $C_2$ (as 2T1) | $1$ | $-1$ | |
| 1.7.2t1.1c1 | $1$ | $ 7 $ | $x^{2} - x + 2$ | $C_2$ (as 2T1) | $1$ | $-1$ | |
| 1.37.2t1.1c1 | $1$ | $ 37 $ | $x^{2} - x - 9$ | $C_2$ (as 2T1) | $1$ | $1$ | |
| * | 1.3.2t1.1c1 | $1$ | $ 3 $ | $x^{2} - x + 1$ | $C_2$ (as 2T1) | $1$ | $-1$ |
| 1.3_7_37.2t1.1c1 | $1$ | $ 3 \cdot 7 \cdot 37 $ | $x^{2} - x - 194$ | $C_2$ (as 2T1) | $1$ | $1$ | |
| 1.3_7.2t1.1c1 | $1$ | $ 3 \cdot 7 $ | $x^{2} - x - 5$ | $C_2$ (as 2T1) | $1$ | $1$ | |
| 1.3_37.2t1.1c1 | $1$ | $ 3 \cdot 37 $ | $x^{2} - x + 28$ | $C_2$ (as 2T1) | $1$ | $-1$ | |
| * | 2.3_37.4t3.2c1 | $2$ | $ 3 \cdot 37 $ | $x^{4} - x^{3} - 2 x^{2} + 3$ | $D_{4}$ (as 4T3) | $1$ | $0$ |
| 2.3_7e2_37.4t3.2c1 | $2$ | $ 3 \cdot 7^{2} \cdot 37 $ | $x^{4} - x^{3} + 20 x^{2} - 2 x + 109$ | $D_{4}$ (as 4T3) | $1$ | $0$ | |
| * | 4.3e4_7e2_37e2.8t15.1c1 | $4$ | $ 3^{4} \cdot 7^{2} \cdot 37^{2}$ | $x^{8} - 3 x^{7} + 14 x^{6} - 27 x^{5} + 66 x^{4} - 57 x^{3} + 116 x^{2} + 6 x + 13$ | $Z_8 : Z_8^\times$ (as 8T15) | $1$ | $0$ |