Normalized defining polynomial
\( x^{8} + 16712 x^{6} + 87278420 x^{4} + 145859695504 x^{2} + 62733642341762 \)
Invariants
| Degree: | $8$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 4]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(178468061110764078379437129728=2^{31}\cdot 2089^{6}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $4533.62$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 2089$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois and abelian over $\Q$. | |||
| Conductor: | \(66848=2^{5}\cdot 2089\) | ||
| Dirichlet character group: | not computed | ||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $\frac{1}{2592449} a^{4} + \frac{4}{1241} a^{2} + \frac{455}{1241}$, $\frac{1}{6950355769} a^{5} - \frac{919577}{3327121} a^{3} - \frac{436377}{3327121} a$, $\frac{1}{6950355769} a^{6} - \frac{871}{6950355769} a^{4} + \frac{1223162}{3327121} a^{2} + \frac{605}{1241}$, $\frac{1}{6950355769} a^{7} - \frac{174195}{475303} a^{3} + \frac{829432}{3327121} a$
Class group and class number
$C_{2}\times C_{66269780}$, which has order $132539560$ (assuming GRH)
Unit group
| Rank: | $3$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | \( \frac{1}{2592449} a^{4} + \frac{4}{1241} a^{2} + \frac{2937}{1241} \), \( \frac{99348531}{6950355769} a^{6} + \frac{1468748537971}{6950355769} a^{4} + \frac{2795087814826}{3327121} a^{2} + \frac{577133308903}{1241} \), \( \frac{63487797}{6950355769} a^{6} + \frac{1019270098015}{6950355769} a^{4} + \frac{2331741955444}{3327121} a^{2} + \frac{1081638277513}{1241} \) (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 6517.80219567 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A cyclic group of order 8 |
| The 8 conjugacy class representatives for $C_8$ |
| Character table for $C_8$ |
Intermediate fields
| \(\Q(\sqrt{2}) \), 4.4.8937310208.2 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/LocalNumberField/3.8.0.1}{8} }$ | ${\href{/LocalNumberField/5.8.0.1}{8} }$ | ${\href{/LocalNumberField/7.1.0.1}{1} }^{8}$ | ${\href{/LocalNumberField/11.8.0.1}{8} }$ | ${\href{/LocalNumberField/13.8.0.1}{8} }$ | ${\href{/LocalNumberField/17.1.0.1}{1} }^{8}$ | ${\href{/LocalNumberField/19.8.0.1}{8} }$ | ${\href{/LocalNumberField/23.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/29.8.0.1}{8} }$ | ${\href{/LocalNumberField/31.4.0.1}{4} }^{2}$ | ${\href{/LocalNumberField/37.8.0.1}{8} }$ | ${\href{/LocalNumberField/41.4.0.1}{4} }^{2}$ | ${\href{/LocalNumberField/43.8.0.1}{8} }$ | ${\href{/LocalNumberField/47.1.0.1}{1} }^{8}$ | ${\href{/LocalNumberField/53.8.0.1}{8} }$ | ${\href{/LocalNumberField/59.8.0.1}{8} }$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.8.31.8 | $x^{8} + 24 x^{6} + 4 x^{4} + 16 x^{2} + 2$ | $8$ | $1$ | $31$ | $C_8$ | $[3, 4, 5]$ |
| 2089 | Data not computed | ||||||