Properties

Label 8.0.178468061110...9728.1
Degree $8$
Signature $[0, 4]$
Discriminant $2^{31}\cdot 2089^{6}$
Root discriminant $4533.62$
Ramified primes $2, 2089$
Class number $132539560$ (GRH)
Class group $[2, 66269780]$ (GRH)
Galois group $C_8$ (as 8T1)

Related objects

Downloads

Learn more about

Show commands for: Magma / SageMath / Pari/GP

magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![62733642341762, 0, 145859695504, 0, 87278420, 0, 16712, 0, 1]);
 
sage: x = polygen(QQ); K.<a> = NumberField(x^8 + 16712*x^6 + 87278420*x^4 + 145859695504*x^2 + 62733642341762)
 
gp: K = bnfinit(x^8 + 16712*x^6 + 87278420*x^4 + 145859695504*x^2 + 62733642341762, 1)
 

Normalized defining polynomial

\( x^{8} + 16712 x^{6} + 87278420 x^{4} + 145859695504 x^{2} + 62733642341762 \)

magma: DefiningPolynomial(K);
 
sage: K.defining_polynomial()
 
gp: K.pol
 

Invariants

Degree:  $8$
magma: Degree(K);
 
sage: K.degree()
 
gp: poldegree(K.pol)
 
Signature:  $[0, 4]$
magma: Signature(K);
 
sage: K.signature()
 
gp: K.sign
 
Discriminant:  \(178468061110764078379437129728=2^{31}\cdot 2089^{6}\)
magma: Discriminant(Integers(K));
 
sage: K.disc()
 
gp: K.disc
 
Root discriminant:  $4533.62$
magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
 
sage: (K.disc().abs())^(1./K.degree())
 
gp: abs(K.disc)^(1/poldegree(K.pol))
 
Ramified primes:  $2, 2089$
magma: PrimeDivisors(Discriminant(Integers(K)));
 
sage: K.disc().support()
 
gp: factor(abs(K.disc))[,1]~
 
This field is Galois and abelian over $\Q$.
Conductor:  \(66848=2^{5}\cdot 2089\)
Dirichlet character group:    not computed
This is a CM field.

Integral basis (with respect to field generator \(a\))

$1$, $a$, $a^{2}$, $a^{3}$, $\frac{1}{2592449} a^{4} + \frac{4}{1241} a^{2} + \frac{455}{1241}$, $\frac{1}{6950355769} a^{5} - \frac{919577}{3327121} a^{3} - \frac{436377}{3327121} a$, $\frac{1}{6950355769} a^{6} - \frac{871}{6950355769} a^{4} + \frac{1223162}{3327121} a^{2} + \frac{605}{1241}$, $\frac{1}{6950355769} a^{7} - \frac{174195}{475303} a^{3} + \frac{829432}{3327121} a$

magma: IntegralBasis(K);
 
sage: K.integral_basis()
 
gp: K.zk
 

Class group and class number

$C_{2}\times C_{66269780}$, which has order $132539560$ (assuming GRH)

magma: ClassGroup(K);
 
sage: K.class_group().invariants()
 
gp: K.clgp
 

Unit group

magma: UK, f := UnitGroup(K);
 
sage: UK = K.unit_group()
 
Rank:  $3$
magma: UnitRank(K);
 
sage: UK.rank()
 
gp: K.fu
 
Torsion generator:  \( -1 \) (order $2$)
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
 
sage: UK.torsion_generator()
 
gp: K.tu[2]
 
Fundamental units:  \( \frac{1}{2592449} a^{4} + \frac{4}{1241} a^{2} + \frac{2937}{1241} \),  \( \frac{99348531}{6950355769} a^{6} + \frac{1468748537971}{6950355769} a^{4} + \frac{2795087814826}{3327121} a^{2} + \frac{577133308903}{1241} \),  \( \frac{63487797}{6950355769} a^{6} + \frac{1019270098015}{6950355769} a^{4} + \frac{2331741955444}{3327121} a^{2} + \frac{1081638277513}{1241} \) (assuming GRH)
magma: [K!f(g): g in Generators(UK)];
 
sage: UK.fundamental_units()
 
gp: K.fu
 
Regulator:  \( 6517.80219567 \) (assuming GRH)
magma: Regulator(K);
 
sage: K.regulator()
 
gp: K.reg
 

Galois group

$C_8$ (as 8T1):

magma: GaloisGroup(K);
 
sage: K.galois_group(type='pari')
 
gp: polgalois(K.pol)
 
A cyclic group of order 8
The 8 conjugacy class representatives for $C_8$
Character table for $C_8$

Intermediate fields

\(\Q(\sqrt{2}) \), 4.4.8937310208.2

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Frobenius cycle types

$p$ 2 3 5 7 11 13 17 19 23 29 31 37 41 43 47 53 59
Cycle type R ${\href{/LocalNumberField/3.8.0.1}{8} }$ ${\href{/LocalNumberField/5.8.0.1}{8} }$ ${\href{/LocalNumberField/7.1.0.1}{1} }^{8}$ ${\href{/LocalNumberField/11.8.0.1}{8} }$ ${\href{/LocalNumberField/13.8.0.1}{8} }$ ${\href{/LocalNumberField/17.1.0.1}{1} }^{8}$ ${\href{/LocalNumberField/19.8.0.1}{8} }$ ${\href{/LocalNumberField/23.2.0.1}{2} }^{4}$ ${\href{/LocalNumberField/29.8.0.1}{8} }$ ${\href{/LocalNumberField/31.4.0.1}{4} }^{2}$ ${\href{/LocalNumberField/37.8.0.1}{8} }$ ${\href{/LocalNumberField/41.4.0.1}{4} }^{2}$ ${\href{/LocalNumberField/43.8.0.1}{8} }$ ${\href{/LocalNumberField/47.1.0.1}{1} }^{8}$ ${\href{/LocalNumberField/53.8.0.1}{8} }$ ${\href{/LocalNumberField/59.8.0.1}{8} }$

In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.

magma: p := 7; // to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
magma: idealfactors := Factorization(p*Integers(K)); // get the data
 
magma: [<primefactor[2], Valuation(Norm(primefactor[1]), p)> : primefactor in idealfactors];
 
sage: p = 7; # to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
sage: [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]
 
gp: p = 7; \\ to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
gp: idealfactors = idealprimedec(K, p); \\ get the data
 
gp: vector(length(idealfactors), j, [idealfactors[j][3], idealfactors[j][4]])
 

Local algebras for ramified primes

$p$LabelPolynomial $e$ $f$ $c$ Galois group Slope content
$2$2.8.31.8$x^{8} + 24 x^{6} + 4 x^{4} + 16 x^{2} + 2$$8$$1$$31$$C_8$$[3, 4, 5]$
2089Data not computed