Normalized defining polynomial
sage: x = polygen(QQ); K.<a> = NumberField(x^8 - 2*x^7 + x^6 + 2*x^5 - 3*x^4 + 2*x^3 + x^2 - 2*x + 1)
gp: K = bnfinit(x^8 - 2*x^7 + x^6 + 2*x^5 - 3*x^4 + 2*x^3 + x^2 - 2*x + 1, 1)
magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![1, -2, 1, 2, -3, 2, 1, -2, 1]);
\(x^{8} - 2 x^{7} + x^{6} + 2 x^{5} - 3 x^{4} + 2 x^{3} + x^{2} - 2 x + 1\)
sage: K.defining_polynomial()
gp: K.pol
magma: DefiningPolynomial(K);
Invariants
Degree: | $8$ | sage: K.degree()
gp: poldegree(K.pol)
magma: Degree(K);
| |
Signature: | $[0, 4]$ | sage: K.signature()
gp: K.sign
magma: Signature(K);
| |
Discriminant: | \(1763584\)\(\medspace = 2^{8}\cdot 83^{2}\) | sage: K.disc()
gp: K.disc
magma: Discriminant(Integers(K));
| |
Root discriminant: | $6.04$ | sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
| |
Ramified primes: | $2, 83$ | sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
magma: PrimeDivisors(Discriminant(Integers(K)));
| |
$|\Aut(K/\Q)|$: | $2$ | ||
This field is not Galois over $\Q$. | |||
This is not a CM field. |
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$
sage: K.integral_basis()
gp: K.zk
magma: IntegralBasis(K);
Class group and class number
Trivial group, which has order $1$
sage: K.class_group().invariants()
gp: K.clgp
magma: ClassGroup(K);
Unit group
sage: UK = K.unit_group()
magma: UK, f := UnitGroup(K);
Rank: | $3$ | sage: UK.rank()
gp: K.fu
magma: UnitRank(K);
| |
Torsion generator: | \( -a^{7} + a^{6} + a^{5} - 3 a^{4} + a^{3} - 2 a + 1 \) (order $4$) ![]() | sage: UK.torsion_generator()
gp: K.tu[2]
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
| |
Fundamental units: | \( a \), \( a^{7} - a^{6} + a^{4} + a \), \( a^{6} - a^{5} + a^{3} - a^{2} + a + 1 \) ![]() | sage: UK.fundamental_units()
gp: K.fu
magma: [K!f(g): g in Generators(UK)];
| |
Regulator: | \( 0.781195313952 \) | sage: K.regulator()
gp: K.reg
magma: Regulator(K);
|
Class number formula
Galois group
$C_2\times S_4$ (as 8T24):
sage: K.galois_group(type='pari')
gp: polgalois(K.pol)
magma: GaloisGroup(K);
A solvable group of order 48 |
The 10 conjugacy class representatives for $S_4\times C_2$ |
Character table for $S_4\times C_2$ |
Intermediate fields
\(\Q(\sqrt{-1}) \), 4.2.1328.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Degree 6 siblings: | 6.2.2287148.1, 6.0.27556.1 |
Degree 8 sibling: | 8.4.12149330176.1 |
Degree 12 siblings: | 12.2.1008394404608.1, 12.0.194389282816.1, 12.0.5231045973904.1, 12.4.1339147769319424.1, 12.0.1339147769319424.1, 12.0.1339147769319424.3 |
Degree 16 sibling: | Deg 16 |
Degree 24 siblings: | data not computed |
Frobenius cycle types
$p$ | $2$ | $3$ | $5$ | $7$ | $11$ | $13$ | $17$ | $19$ | $23$ | $29$ | $31$ | $37$ | $41$ | $43$ | $47$ | $53$ | $59$ |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Cycle type | R | ${\href{/LocalNumberField/3.6.0.1}{6} }{,}\,{\href{/LocalNumberField/3.2.0.1}{2} }$ | ${\href{/LocalNumberField/5.4.0.1}{4} }^{2}$ | ${\href{/LocalNumberField/7.6.0.1}{6} }{,}\,{\href{/LocalNumberField/7.2.0.1}{2} }$ | ${\href{/LocalNumberField/11.6.0.1}{6} }{,}\,{\href{/LocalNumberField/11.2.0.1}{2} }$ | ${\href{/LocalNumberField/13.4.0.1}{4} }^{2}$ | ${\href{/LocalNumberField/17.3.0.1}{3} }^{2}{,}\,{\href{/LocalNumberField/17.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/19.4.0.1}{4} }^{2}$ | ${\href{/LocalNumberField/23.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/29.3.0.1}{3} }^{2}{,}\,{\href{/LocalNumberField/29.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/31.6.0.1}{6} }{,}\,{\href{/LocalNumberField/31.2.0.1}{2} }$ | ${\href{/LocalNumberField/37.3.0.1}{3} }^{2}{,}\,{\href{/LocalNumberField/37.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/41.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/43.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/47.4.0.1}{4} }^{2}$ | ${\href{/LocalNumberField/53.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/53.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/59.6.0.1}{6} }{,}\,{\href{/LocalNumberField/59.2.0.1}{2} }$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
sage: p = 7; # to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
sage: [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]
gp: p = 7; \\ to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
gp: idealfactors = idealprimedec(K, p); \\ get the data
gp: vector(length(idealfactors), j, [idealfactors[j][3], idealfactors[j][4]])
magma: p := 7; // to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
magma: idealfactors := Factorization(p*Integers(K)); // get the data
magma: [<primefactor[2], Valuation(Norm(primefactor[1]), p)> : primefactor in idealfactors];
Local algebras for ramified primes
$p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
---|---|---|---|---|---|---|---|
$2$ | 2.8.8.1 | $x^{8} + 28 x^{4} + 144$ | $2$ | $4$ | $8$ | $C_4\times C_2$ | $[2]^{4}$ |
$83$ | 83.2.0.1 | $x^{2} - x + 2$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ |
83.2.0.1 | $x^{2} - x + 2$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
83.4.2.1 | $x^{4} + 249 x^{2} + 27556$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ |