Properties

Label 8.0.17555190016.3
Degree $8$
Signature $[0, 4]$
Discriminant $2^{8}\cdot 7^{4}\cdot 13^{4}$
Root discriminant $19.08$
Ramified primes $2, 7, 13$
Class number $2$
Class group $[2]$
Galois group $((C_2 \times D_4): C_2):C_3$ (as 8T32)

Related objects

Downloads

Learn more about

Show commands for: Magma / SageMath / Pari/GP

magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![4, 0, -3, 0, 12, 0, -5, 0, 1]);
 
sage: x = polygen(QQ); K.<a> = NumberField(x^8 - 5*x^6 + 12*x^4 - 3*x^2 + 4)
 
gp: K = bnfinit(x^8 - 5*x^6 + 12*x^4 - 3*x^2 + 4, 1)
 

Normalized defining polynomial

\( x^{8} - 5 x^{6} + 12 x^{4} - 3 x^{2} + 4 \)

magma: DefiningPolynomial(K);
 
sage: K.defining_polynomial()
 
gp: K.pol
 

Invariants

Degree:  $8$
magma: Degree(K);
 
sage: K.degree()
 
gp: poldegree(K.pol)
 
Signature:  $[0, 4]$
magma: Signature(K);
 
sage: K.signature()
 
gp: K.sign
 
Discriminant:  \(17555190016=2^{8}\cdot 7^{4}\cdot 13^{4}\)
magma: Discriminant(Integers(K));
 
sage: K.disc()
 
gp: K.disc
 
Root discriminant:  $19.08$
magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
 
sage: (K.disc().abs())^(1./K.degree())
 
gp: abs(K.disc)^(1/poldegree(K.pol))
 
Ramified primes:  $2, 7, 13$
magma: PrimeDivisors(Discriminant(Integers(K)));
 
sage: K.disc().support()
 
gp: factor(abs(K.disc))[,1]~
 
This field is not Galois over $\Q$.
This is not a CM field.

Integral basis (with respect to field generator \(a\))

$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $\frac{1}{7} a^{6} - \frac{2}{7} a^{4} - \frac{1}{7} a^{2} + \frac{1}{7}$, $\frac{1}{14} a^{7} + \frac{5}{14} a^{5} + \frac{3}{7} a^{3} + \frac{1}{14} a$

magma: IntegralBasis(K);
 
sage: K.integral_basis()
 
gp: K.zk
 

Class group and class number

$C_{2}$, which has order $2$

magma: ClassGroup(K);
 
sage: K.class_group().invariants()
 
gp: K.clgp
 

Unit group

magma: UK, f := UnitGroup(K);
 
sage: UK = K.unit_group()
 
Rank:  $3$
magma: UnitRank(K);
 
sage: UK.rank()
 
gp: K.fu
 
Torsion generator:  \( -1 \) (order $2$)
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
 
sage: UK.torsion_generator()
 
gp: K.tu[2]
 
Fundamental units:  \( \frac{3}{7} a^{6} - \frac{13}{7} a^{4} + \frac{25}{7} a^{2} + \frac{17}{7} \),  \( \frac{1}{14} a^{7} + \frac{1}{7} a^{6} - \frac{9}{14} a^{5} - \frac{2}{7} a^{4} + \frac{10}{7} a^{3} + \frac{6}{7} a^{2} - \frac{27}{14} a + \frac{8}{7} \),  \( \frac{2}{7} a^{7} + \frac{6}{7} a^{6} - \frac{4}{7} a^{5} - \frac{26}{7} a^{4} - \frac{9}{7} a^{3} + \frac{57}{7} a^{2} + \frac{65}{7} a + \frac{27}{7} \)
magma: [K!f(g): g in Generators(UK)];
 
sage: UK.fundamental_units()
 
gp: K.fu
 
Regulator:  \( 130.67439539 \)
magma: Regulator(K);
 
sage: K.regulator()
 
gp: K.reg
 

Galois group

$C_2^3:A_4$ (as 8T32):

magma: GaloisGroup(K);
 
sage: K.galois_group(type='pari')
 
gp: polgalois(K.pol)
 
A solvable group of order 96
The 11 conjugacy class representatives for $((C_2 \times D_4): C_2):C_3$
Character table for $((C_2 \times D_4): C_2):C_3$

Intermediate fields

4.0.8281.1

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Sibling fields

Degree 8 siblings: data not computed
Degree 24 siblings: data not computed
Degree 32 sibling: data not computed

Frobenius cycle types

$p$ 2 3 5 7 11 13 17 19 23 29 31 37 41 43 47 53 59
Cycle type R ${\href{/LocalNumberField/3.3.0.1}{3} }^{2}{,}\,{\href{/LocalNumberField/3.1.0.1}{1} }^{2}$ ${\href{/LocalNumberField/5.3.0.1}{3} }^{2}{,}\,{\href{/LocalNumberField/5.1.0.1}{1} }^{2}$ R ${\href{/LocalNumberField/11.6.0.1}{6} }{,}\,{\href{/LocalNumberField/11.2.0.1}{2} }$ R ${\href{/LocalNumberField/17.6.0.1}{6} }{,}\,{\href{/LocalNumberField/17.2.0.1}{2} }$ ${\href{/LocalNumberField/19.3.0.1}{3} }^{2}{,}\,{\href{/LocalNumberField/19.1.0.1}{1} }^{2}$ ${\href{/LocalNumberField/23.6.0.1}{6} }{,}\,{\href{/LocalNumberField/23.2.0.1}{2} }$ ${\href{/LocalNumberField/29.4.0.1}{4} }^{2}$ ${\href{/LocalNumberField/31.3.0.1}{3} }^{2}{,}\,{\href{/LocalNumberField/31.1.0.1}{1} }^{2}$ ${\href{/LocalNumberField/37.6.0.1}{6} }{,}\,{\href{/LocalNumberField/37.2.0.1}{2} }$ ${\href{/LocalNumberField/41.4.0.1}{4} }^{2}$ ${\href{/LocalNumberField/43.4.0.1}{4} }^{2}$ ${\href{/LocalNumberField/47.3.0.1}{3} }^{2}{,}\,{\href{/LocalNumberField/47.1.0.1}{1} }^{2}$ ${\href{/LocalNumberField/53.6.0.1}{6} }{,}\,{\href{/LocalNumberField/53.2.0.1}{2} }$ ${\href{/LocalNumberField/59.3.0.1}{3} }^{2}{,}\,{\href{/LocalNumberField/59.1.0.1}{1} }^{2}$

In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.

magma: p := 7; // to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
magma: idealfactors := Factorization(p*Integers(K)); // get the data
 
magma: [<primefactor[2], Valuation(Norm(primefactor[1]), p)> : primefactor in idealfactors];
 
sage: p = 7; # to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
sage: [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]
 
gp: p = 7; \\ to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
gp: idealfactors = idealprimedec(K, p); \\ get the data
 
gp: vector(length(idealfactors), j, [idealfactors[j][3], idealfactors[j][4]])
 

Local algebras for ramified primes

$p$LabelPolynomial $e$ $f$ $c$ Galois group Slope content
$2$2.2.2.2$x^{2} + 2 x - 2$$2$$1$$2$$C_2$$[2]$
2.6.6.6$x^{6} - 13 x^{4} + 7 x^{2} - 3$$2$$3$$6$$A_4\times C_2$$[2, 2, 2]^{3}$
$7$7.2.0.1$x^{2} - x + 3$$1$$2$$0$$C_2$$[\ ]^{2}$
7.6.4.3$x^{6} + 56 x^{3} + 1323$$3$$2$$4$$C_6$$[\ ]_{3}^{2}$
$13$13.8.4.1$x^{8} + 26 x^{6} + 845 x^{4} + 6591 x^{2} + 114244$$2$$4$$4$$C_4\times C_2$$[\ ]_{2}^{4}$

Artin representations

Label Dimension Conductor Defining polynomial of Artin field $G$ Ind $\chi(c)$
* 1.1.1t1.1c1$1$ $1$ $x$ $C_1$ $1$ $1$
1.7.3t1.1c1$1$ $ 7 $ $x^{3} - x^{2} - 2 x + 1$ $C_3$ (as 3T1) $0$ $1$
1.7.3t1.1c2$1$ $ 7 $ $x^{3} - x^{2} - 2 x + 1$ $C_3$ (as 3T1) $0$ $1$
3.2e6_7e2.4t4.1c1$3$ $ 2^{6} \cdot 7^{2}$ $x^{4} - 2 x^{3} + 2 x^{2} + 2$ $A_4$ (as 4T4) $1$ $-1$
3.2e6_7e2_13e2.4t4.3c1$3$ $ 2^{6} \cdot 7^{2} \cdot 13^{2}$ $x^{4} - 2 x^{3} + 6 x^{2} + 8 x + 42$ $A_4$ (as 4T4) $1$ $-1$
3.2e6_7e2_13e2.4t4.2c1$3$ $ 2^{6} \cdot 7^{2} \cdot 13^{2}$ $x^{4} - 2 x^{3} - 14 x^{2} + 2 x + 27$ $A_4$ (as 4T4) $1$ $3$
3.2e6_7e2_13e2.4t4.1c1$3$ $ 2^{6} \cdot 7^{2} \cdot 13^{2}$ $x^{4} - 2 x^{3} + 2 x^{2} + 12 x + 10$ $A_4$ (as 4T4) $1$ $-1$
* 3.7e2_13e2.4t4.1c1$3$ $ 7^{2} \cdot 13^{2}$ $x^{4} - x^{3} + 5 x^{2} - 4 x + 3$ $A_4$ (as 4T4) $1$ $-1$
* 4.2e8_7e2_13e2.8t32.4c1$4$ $ 2^{8} \cdot 7^{2} \cdot 13^{2}$ $x^{8} - 5 x^{6} + 12 x^{4} - 3 x^{2} + 4$ $((C_2 \times D_4): C_2):C_3$ (as 8T32) $1$ $0$
4.2e8_7e3_13e2.24t97.4c1$4$ $ 2^{8} \cdot 7^{3} \cdot 13^{2}$ $x^{8} - 5 x^{6} + 12 x^{4} - 3 x^{2} + 4$ $((C_2 \times D_4): C_2):C_3$ (as 8T32) $0$ $0$
4.2e8_7e3_13e2.24t97.4c2$4$ $ 2^{8} \cdot 7^{3} \cdot 13^{2}$ $x^{8} - 5 x^{6} + 12 x^{4} - 3 x^{2} + 4$ $((C_2 \times D_4): C_2):C_3$ (as 8T32) $0$ $0$

Data is given for all irreducible representations of the Galois group for the Galois closure of this field. Those marked with * are summands in the permutation representation coming from this field. Representations which appear with multiplicity greater than one are indicated by exponents on the *.