Normalized defining polynomial
\( x^{8} - 2 x^{7} - 290 x^{6} + 4924 x^{5} + 25657 x^{4} - 1755674 x^{3} + 35342184 x^{2} - 200704608 x + 375083136 \)
Invariants
| Degree: | $8$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 4]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(168630239892922523260609=193^{6}\cdot 239^{4}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $800.51$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $193, 239$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $\frac{1}{2} a^{2} - \frac{1}{2} a$, $\frac{1}{6} a^{3} - \frac{1}{6} a$, $\frac{1}{144} a^{4} + \frac{1}{24} a^{3} - \frac{1}{144} a^{2} + \frac{7}{24} a - \frac{1}{2}$, $\frac{1}{432} a^{5} + \frac{1}{432} a^{4} - \frac{31}{432} a^{3} - \frac{97}{432} a^{2} - \frac{23}{72} a - \frac{1}{2}$, $\frac{1}{1238976} a^{6} + \frac{385}{412992} a^{5} - \frac{1043}{1238976} a^{4} - \frac{2561}{412992} a^{3} + \frac{36845}{619488} a^{2} + \frac{22103}{51624} a + \frac{20}{717}$, $\frac{1}{1379470922496} a^{7} + \frac{19427}{76637273472} a^{6} + \frac{489481}{16822816128} a^{5} - \frac{74808347}{57477955104} a^{4} + \frac{79924148749}{1379470922496} a^{3} - \frac{1362658805}{5607605376} a^{2} + \frac{756624769}{3193219728} a - \frac{1387565}{5722616}$
Class group and class number
$C_{10}\times C_{70}\times C_{15960}$, which has order $11172000$ (assuming GRH)
Unit group
| Rank: | $3$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 55944.6653583 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 8 |
| The 5 conjugacy class representatives for $D_4$ |
| Character table for $D_4$ |
Intermediate fields
| \(\Q(\sqrt{-239}) \), \(\Q(\sqrt{193}) \), \(\Q(\sqrt{-46127}) \), \(\Q(\sqrt{193}, \sqrt{-239})\), 4.2.1718184623.1 x2, 4.0.410646124897.1 x2 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 4 siblings: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.1.0.1}{1} }^{8}$ | ${\href{/LocalNumberField/3.1.0.1}{1} }^{8}$ | ${\href{/LocalNumberField/5.4.0.1}{4} }^{2}$ | ${\href{/LocalNumberField/7.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/11.4.0.1}{4} }^{2}$ | ${\href{/LocalNumberField/13.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/17.4.0.1}{4} }^{2}$ | ${\href{/LocalNumberField/19.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/23.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/29.4.0.1}{4} }^{2}$ | ${\href{/LocalNumberField/31.1.0.1}{1} }^{8}$ | ${\href{/LocalNumberField/37.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/41.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/43.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/47.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/53.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/59.2.0.1}{2} }^{4}$ |
Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $193$ | 193.4.3.1 | $x^{4} - 193$ | $4$ | $1$ | $3$ | $C_4$ | $[\ ]_{4}$ |
| 193.4.3.1 | $x^{4} - 193$ | $4$ | $1$ | $3$ | $C_4$ | $[\ ]_{4}$ | |
| 239 | Data not computed | ||||||