Normalized defining polynomial
\( x^{8} - 3 x^{7} + 64 x^{6} - 192 x^{5} + 1836 x^{4} - 4635 x^{3} + 39520 x^{2} - 110850 x + 565795 \)
Invariants
| Degree: | $8$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 4]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(1686221298140625=3^{6}\cdot 5^{6}\cdot 23^{6}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $80.05$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $3, 5, 23$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois over $\Q$. | |||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $\frac{1}{2} a^{5} - \frac{1}{2} a^{3} - \frac{1}{2} a - \frac{1}{2}$, $\frac{1}{4552} a^{6} + \frac{229}{4552} a^{5} + \frac{1045}{4552} a^{4} - \frac{775}{4552} a^{3} - \frac{2059}{4552} a^{2} + \frac{729}{2276} a - \frac{1943}{4552}$, $\frac{1}{285557347664} a^{7} + \frac{2961779}{71389336916} a^{6} - \frac{1113940305}{35694668458} a^{5} - \frac{33644557125}{71389336916} a^{4} - \frac{3078513299}{71389336916} a^{3} + \frac{103105931573}{285557347664} a^{2} + \frac{30215055775}{285557347664} a - \frac{72836877657}{285557347664}$
Class group and class number
$C_{2}\times C_{6}\times C_{6}$, which has order $72$
Unit group
| Rank: | $3$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 235.623843305 \) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 8 |
| The 5 conjugacy class representatives for $Q_8$ |
| Character table for $Q_8$ |
Intermediate fields
| \(\Q(\sqrt{69}) \), \(\Q(\sqrt{5}) \), \(\Q(\sqrt{345}) \), \(\Q(\sqrt{5}, \sqrt{69})\) |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.4.0.1}{4} }^{2}$ | R | R | ${\href{/LocalNumberField/7.4.0.1}{4} }^{2}$ | ${\href{/LocalNumberField/11.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/13.4.0.1}{4} }^{2}$ | ${\href{/LocalNumberField/17.4.0.1}{4} }^{2}$ | ${\href{/LocalNumberField/19.4.0.1}{4} }^{2}$ | R | ${\href{/LocalNumberField/29.4.0.1}{4} }^{2}$ | ${\href{/LocalNumberField/31.1.0.1}{1} }^{8}$ | ${\href{/LocalNumberField/37.4.0.1}{4} }^{2}$ | ${\href{/LocalNumberField/41.4.0.1}{4} }^{2}$ | ${\href{/LocalNumberField/43.4.0.1}{4} }^{2}$ | ${\href{/LocalNumberField/47.4.0.1}{4} }^{2}$ | ${\href{/LocalNumberField/53.4.0.1}{4} }^{2}$ | ${\href{/LocalNumberField/59.4.0.1}{4} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $3$ | 3.8.6.1 | $x^{8} + 9 x^{4} + 36$ | $4$ | $2$ | $6$ | $Q_8$ | $[\ ]_{4}^{2}$ |
| $5$ | 5.4.3.1 | $x^{4} - 5$ | $4$ | $1$ | $3$ | $C_4$ | $[\ ]_{4}$ |
| 5.4.3.1 | $x^{4} - 5$ | $4$ | $1$ | $3$ | $C_4$ | $[\ ]_{4}$ | |
| $23$ | 23.8.6.1 | $x^{8} + 299 x^{4} + 25921$ | $4$ | $2$ | $6$ | $Q_8$ | $[\ ]_{4}^{2}$ |
Artin representations
| Label | Dimension | Conductor | Defining polynomial of Artin field | $G$ | Ind | $\chi(c)$ | |
|---|---|---|---|---|---|---|---|
| * | 1.1.1t1.1c1 | $1$ | $1$ | $x$ | $C_1$ | $1$ | $1$ |
| * | 1.3_23.2t1.1c1 | $1$ | $ 3 \cdot 23 $ | $x^{2} - x - 17$ | $C_2$ (as 2T1) | $1$ | $1$ |
| * | 1.5.2t1.1c1 | $1$ | $ 5 $ | $x^{2} - x - 1$ | $C_2$ (as 2T1) | $1$ | $1$ |
| * | 1.3_5_23.2t1.1c1 | $1$ | $ 3 \cdot 5 \cdot 23 $ | $x^{2} - x - 86$ | $C_2$ (as 2T1) | $1$ | $1$ |
| *2 | 2.3e2_5e2_23e2.8t5.2c1 | $2$ | $ 3^{2} \cdot 5^{2} \cdot 23^{2}$ | $x^{8} - 3 x^{7} + 64 x^{6} - 192 x^{5} + 1836 x^{4} - 4635 x^{3} + 39520 x^{2} - 110850 x + 565795$ | $Q_8$ (as 8T5) | $-1$ | $-2$ |