Properties

Label 8.0.1677721600.2
Degree $8$
Signature $[0, 4]$
Discriminant $2^{26}\cdot 5^{2}$
Root discriminant $14.23$
Ramified primes $2, 5$
Class number $1$ (GRH)
Class group Trivial (GRH)
Galois group $C_2^3 : C_4 $ (as 8T19)

Related objects

Downloads

Learn more about

Show commands for: Magma / SageMath / Pari/GP

magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![25, 0, 20, 0, 12, 0, -8, 0, 1]);
 
sage: x = polygen(QQ); K.<a> = NumberField(x^8 - 8*x^6 + 12*x^4 + 20*x^2 + 25)
 
gp: K = bnfinit(x^8 - 8*x^6 + 12*x^4 + 20*x^2 + 25, 1)
 

Normalized defining polynomial

\( x^{8} - 8 x^{6} + 12 x^{4} + 20 x^{2} + 25 \)

magma: DefiningPolynomial(K);
 
sage: K.defining_polynomial()
 
gp: K.pol
 

Invariants

Degree:  $8$
magma: Degree(K);
 
sage: K.degree()
 
gp: poldegree(K.pol)
 
Signature:  $[0, 4]$
magma: Signature(K);
 
sage: K.signature()
 
gp: K.sign
 
Discriminant:  \(1677721600=2^{26}\cdot 5^{2}\)
magma: Discriminant(Integers(K));
 
sage: K.disc()
 
gp: K.disc
 
Root discriminant:  $14.23$
magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
 
sage: (K.disc().abs())^(1./K.degree())
 
gp: abs(K.disc)^(1/poldegree(K.pol))
 
Ramified primes:  $2, 5$
magma: PrimeDivisors(Discriminant(Integers(K)));
 
sage: K.disc().support()
 
gp: factor(abs(K.disc))[,1]~
 
This field is not Galois over $\Q$.
This is not a CM field.

Integral basis (with respect to field generator \(a\))

$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $\frac{1}{155} a^{6} - \frac{53}{155} a^{4} + \frac{72}{155} a^{2} + \frac{7}{31}$, $\frac{1}{155} a^{7} - \frac{53}{155} a^{5} + \frac{72}{155} a^{3} + \frac{7}{31} a$

magma: IntegralBasis(K);
 
sage: K.integral_basis()
 
gp: K.zk
 

Class group and class number

Trivial group, which has order $1$ (assuming GRH)

magma: ClassGroup(K);
 
sage: K.class_group().invariants()
 
gp: K.clgp
 

Unit group

magma: UK, f := UnitGroup(K);
 
sage: UK = K.unit_group()
 
Rank:  $3$
magma: UnitRank(K);
 
sage: UK.rank()
 
gp: K.fu
 
Torsion generator:  \( -\frac{2}{31} a^{6} + \frac{13}{31} a^{4} - \frac{20}{31} a^{2} - \frac{8}{31} \) (order $4$)
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
 
sage: UK.torsion_generator()
 
gp: K.tu[2]
 
Fundamental units:  \( \frac{14}{155} a^{6} - \frac{122}{155} a^{4} + \frac{233}{155} a^{2} + \frac{36}{31} \),  \( \frac{17}{155} a^{7} + \frac{24}{155} a^{6} - \frac{126}{155} a^{5} - \frac{187}{155} a^{4} + \frac{139}{155} a^{3} + \frac{333}{155} a^{2} + \frac{88}{31} a + \frac{13}{31} \),  \( \frac{27}{155} a^{7} - \frac{1}{31} a^{6} - \frac{191}{155} a^{5} - \frac{9}{31} a^{4} + \frac{239}{155} a^{3} + \frac{83}{31} a^{2} + \frac{65}{31} a - \frac{4}{31} \) (assuming GRH)
magma: [K!f(g): g in Generators(UK)];
 
sage: UK.fundamental_units()
 
gp: K.fu
 
Regulator:  \( 75.0232672451 \) (assuming GRH)
magma: Regulator(K);
 
sage: K.regulator()
 
gp: K.reg
 

Galois group

$C_2^2.D_4$ (as 8T19):

magma: GaloisGroup(K);
 
sage: K.galois_group(type='pari')
 
gp: polgalois(K.pol)
 
A solvable group of order 32
The 11 conjugacy class representatives for $C_2^3 : C_4 $
Character table for $C_2^3 : C_4 $

Intermediate fields

\(\Q(\sqrt{-1}) \), 4.0.512.1

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Sibling fields

Galois closure: data not computed
Degree 8 siblings: data not computed
Degree 16 siblings: data not computed

Frobenius cycle types

$p$ 2 3 5 7 11 13 17 19 23 29 31 37 41 43 47 53 59
Cycle type R ${\href{/LocalNumberField/3.4.0.1}{4} }^{2}$ R ${\href{/LocalNumberField/7.2.0.1}{2} }^{4}$ ${\href{/LocalNumberField/11.4.0.1}{4} }^{2}$ ${\href{/LocalNumberField/13.4.0.1}{4} }{,}\,{\href{/LocalNumberField/13.2.0.1}{2} }{,}\,{\href{/LocalNumberField/13.1.0.1}{1} }^{2}$ ${\href{/LocalNumberField/17.2.0.1}{2} }^{4}$ ${\href{/LocalNumberField/19.4.0.1}{4} }^{2}$ ${\href{/LocalNumberField/23.2.0.1}{2} }^{4}$ ${\href{/LocalNumberField/29.4.0.1}{4} }{,}\,{\href{/LocalNumberField/29.2.0.1}{2} }{,}\,{\href{/LocalNumberField/29.1.0.1}{1} }^{2}$ ${\href{/LocalNumberField/31.2.0.1}{2} }^{4}$ ${\href{/LocalNumberField/37.4.0.1}{4} }{,}\,{\href{/LocalNumberField/37.2.0.1}{2} }{,}\,{\href{/LocalNumberField/37.1.0.1}{1} }^{2}$ ${\href{/LocalNumberField/41.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/41.1.0.1}{1} }^{4}$ ${\href{/LocalNumberField/43.4.0.1}{4} }^{2}$ ${\href{/LocalNumberField/47.4.0.1}{4} }^{2}$ ${\href{/LocalNumberField/53.4.0.1}{4} }{,}\,{\href{/LocalNumberField/53.2.0.1}{2} }{,}\,{\href{/LocalNumberField/53.1.0.1}{1} }^{2}$ ${\href{/LocalNumberField/59.4.0.1}{4} }^{2}$

In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.

magma: p := 7; // to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
magma: idealfactors := Factorization(p*Integers(K)); // get the data
 
magma: [<primefactor[2], Valuation(Norm(primefactor[1]), p)> : primefactor in idealfactors];
 
sage: p = 7; # to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
sage: [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]
 
gp: p = 7; \\ to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
gp: idealfactors = idealprimedec(K, p); \\ get the data
 
gp: vector(length(idealfactors), j, [idealfactors[j][3], idealfactors[j][4]])
 

Artin representations

Label Dimension Conductor Defining polynomial of Artin field $G$ Ind $\chi(c)$
* 1.1.1t1.1c1$1$ $1$ $x$ $C_1$ $1$ $1$
* 1.2e2.2t1.1c1$1$ $ 2^{2}$ $x^{2} + 1$ $C_2$ (as 2T1) $1$ $-1$
1.2e3.2t1.2c1$1$ $ 2^{3}$ $x^{2} + 2$ $C_2$ (as 2T1) $1$ $-1$
1.2e3.2t1.1c1$1$ $ 2^{3}$ $x^{2} - 2$ $C_2$ (as 2T1) $1$ $1$
1.2e4_5.4t1.3c1$1$ $ 2^{4} \cdot 5 $ $x^{4} - 20 x^{2} + 50$ $C_4$ (as 4T1) $0$ $1$
1.2e4_5.4t1.4c1$1$ $ 2^{4} \cdot 5 $ $x^{4} + 20 x^{2} + 50$ $C_4$ (as 4T1) $0$ $-1$
1.2e4_5.4t1.4c2$1$ $ 2^{4} \cdot 5 $ $x^{4} + 20 x^{2} + 50$ $C_4$ (as 4T1) $0$ $-1$
1.2e4_5.4t1.3c2$1$ $ 2^{4} \cdot 5 $ $x^{4} - 20 x^{2} + 50$ $C_4$ (as 4T1) $0$ $1$
* 2.2e7.4t3.1c1$2$ $ 2^{7}$ $x^{4} - 2 x^{2} - 1$ $D_{4}$ (as 4T3) $1$ $0$
2.2e8_5e2.4t3.1c1$2$ $ 2^{8} \cdot 5^{2}$ $x^{4} - 50$ $D_{4}$ (as 4T3) $1$ $0$
* 4.2e17_5e2.8t21.2c1$4$ $ 2^{17} \cdot 5^{2}$ $x^{8} - 8 x^{6} + 12 x^{4} + 20 x^{2} + 25$ $C_2^3 : C_4 $ (as 8T19) $1$ $0$

Data is given for all irreducible representations of the Galois group for the Galois closure of this field. Those marked with * are summands in the permutation representation coming from this field. Representations which appear with multiplicity greater than one are indicated by exponents on the *.