Normalized defining polynomial
\( x^{8} - 3 x^{7} + 32912 x^{6} - 98793 x^{5} + 239357760 x^{4} - 1502459109 x^{3} + 477022089020 x^{2} - 4559653374927 x + 39093600296275 \)
Invariants
| Degree: | $8$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 4]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(16726853867309592405065509153=313^{5}\cdot 421^{6}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $3372.30$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $313, 421$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $\frac{1}{3} a^{2} - \frac{1}{3}$, $\frac{1}{6} a^{3} + \frac{1}{3} a - \frac{1}{2}$, $\frac{1}{36} a^{4} - \frac{1}{12} a^{3} - \frac{1}{18} a^{2} - \frac{5}{12} a - \frac{17}{36}$, $\frac{1}{864} a^{5} - \frac{1}{108} a^{4} - \frac{59}{864} a^{3} - \frac{41}{864} a^{2} + \frac{83}{432} a - \frac{275}{864}$, $\frac{1}{139968} a^{6} - \frac{7}{46656} a^{5} + \frac{511}{46656} a^{4} + \frac{1633}{23328} a^{3} + \frac{163}{15552} a^{2} + \frac{7973}{46656} a - \frac{23737}{139968}$, $\frac{1}{1587500312278323724398919751040} a^{7} + \frac{493295075712017795979487}{198437539034790465549864968880} a^{6} + \frac{5384624933885618465200699}{66145846344930155183288322960} a^{5} + \frac{1127831396249886725295417397}{529166770759441241466306583680} a^{4} + \frac{4590689844339666957513146023}{529166770759441241466306583680} a^{3} + \frac{402287122802449919443004467}{264583385379720620733153291840} a^{2} + \frac{8026712234288533455035142493}{61057704318397066323035375040} a - \frac{5556204682381741950604386451}{45357151779380677839969135744}$
Class group and class number
$C_{2}\times C_{2}\times C_{2}\times C_{45547970}$, which has order $364383760$ (assuming GRH)
Unit group
| Rank: | $3$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 23106.5184098 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_4\wr C_2$ (as 8T17):
| A solvable group of order 32 |
| The 14 conjugacy class representatives for $C_4\wr C_2$ |
| Character table for $C_4\wr C_2$ |
Intermediate fields
| \(\Q(\sqrt{421}) \), 4.4.55476433.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Galois closure: | data not computed |
| Degree 8 sibling: | data not computed |
| Degree 16 siblings: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/3.1.0.1}{1} }^{8}$ | ${\href{/LocalNumberField/5.4.0.1}{4} }{,}\,{\href{/LocalNumberField/5.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/7.4.0.1}{4} }{,}\,{\href{/LocalNumberField/7.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/11.4.0.1}{4} }^{2}$ | ${\href{/LocalNumberField/13.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/17.4.0.1}{4} }{,}\,{\href{/LocalNumberField/17.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/19.4.0.1}{4} }^{2}$ | ${\href{/LocalNumberField/23.8.0.1}{8} }$ | ${\href{/LocalNumberField/29.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/31.4.0.1}{4} }{,}\,{\href{/LocalNumberField/31.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/37.8.0.1}{8} }$ | ${\href{/LocalNumberField/41.8.0.1}{8} }$ | ${\href{/LocalNumberField/43.8.0.1}{8} }$ | ${\href{/LocalNumberField/47.8.0.1}{8} }$ | ${\href{/LocalNumberField/53.8.0.1}{8} }$ | ${\href{/LocalNumberField/59.8.0.1}{8} }$ |
Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 313 | Data not computed | ||||||
| 421 | Data not computed | ||||||