Properties

Label 8.0.1625943765625.1
Degree $8$
Signature $[0, 4]$
Discriminant $5^{6}\cdot 101^{4}$
Root discriminant $33.60$
Ramified primes $5, 101$
Class number $16$
Class group $[2, 8]$
Galois group $C_2^3 : C_4 $ (as 8T19)

Related objects

Downloads

Learn more about

Show commands for: Magma / SageMath / Pari/GP

magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![6, -23, 47, -50, 31, -10, 8, -4, 1]);
 
sage: x = polygen(QQ); K.<a> = NumberField(x^8 - 4*x^7 + 8*x^6 - 10*x^5 + 31*x^4 - 50*x^3 + 47*x^2 - 23*x + 6)
 
gp: K = bnfinit(x^8 - 4*x^7 + 8*x^6 - 10*x^5 + 31*x^4 - 50*x^3 + 47*x^2 - 23*x + 6, 1)
 

Normalized defining polynomial

\( x^{8} - 4 x^{7} + 8 x^{6} - 10 x^{5} + 31 x^{4} - 50 x^{3} + 47 x^{2} - 23 x + 6 \)

magma: DefiningPolynomial(K);
 
sage: K.defining_polynomial()
 
gp: K.pol
 

Invariants

Degree:  $8$
magma: Degree(K);
 
sage: K.degree()
 
gp: poldegree(K.pol)
 
Signature:  $[0, 4]$
magma: Signature(K);
 
sage: K.signature()
 
gp: K.sign
 
Discriminant:  \(1625943765625=5^{6}\cdot 101^{4}\)
magma: Discriminant(Integers(K));
 
sage: K.disc()
 
gp: K.disc
 
Root discriminant:  $33.60$
magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
 
sage: (K.disc().abs())^(1./K.degree())
 
gp: abs(K.disc)^(1/poldegree(K.pol))
 
Ramified primes:  $5, 101$
magma: PrimeDivisors(Discriminant(Integers(K)));
 
sage: K.disc().support()
 
gp: factor(abs(K.disc))[,1]~
 
This field is not Galois over $\Q$.
This is not a CM field.

Integral basis (with respect to field generator \(a\))

$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $\frac{1}{21} a^{7} + \frac{1}{3} a^{6} + \frac{1}{21} a^{5} + \frac{1}{21} a^{4} - \frac{8}{21} a^{2} + \frac{1}{21} a + \frac{3}{7}$

magma: IntegralBasis(K);
 
sage: K.integral_basis()
 
gp: K.zk
 

Class group and class number

$C_{2}\times C_{8}$, which has order $16$

magma: ClassGroup(K);
 
sage: K.class_group().invariants()
 
gp: K.clgp
 

Unit group

magma: UK, f := UnitGroup(K);
 
sage: UK = K.unit_group()
 
Rank:  $3$
magma: UnitRank(K);
 
sage: UK.rank()
 
gp: K.fu
 
Torsion generator:  \( -1 \) (order $2$)
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
 
sage: UK.torsion_generator()
 
gp: K.tu[2]
 
Fundamental units:  \( \frac{5}{7} a^{7} - 2 a^{6} + \frac{19}{7} a^{5} - \frac{16}{7} a^{4} + 18 a^{3} - \frac{103}{7} a^{2} + \frac{19}{7} a + \frac{31}{7} \),  \( \frac{188}{21} a^{7} - \frac{88}{3} a^{6} + \frac{1007}{21} a^{5} - \frac{1009}{21} a^{4} + 233 a^{3} - \frac{5683}{21} a^{2} + \frac{3464}{21} a - \frac{297}{7} \),  \( \frac{2}{21} a^{7} - \frac{1}{3} a^{6} + \frac{23}{21} a^{5} - \frac{19}{21} a^{4} + \frac{5}{21} a^{2} + \frac{2}{21} a - \frac{1}{7} \)
magma: [K!f(g): g in Generators(UK)];
 
sage: UK.fundamental_units()
 
gp: K.fu
 
Regulator:  \( 526.671257635 \)
magma: Regulator(K);
 
sage: K.regulator()
 
gp: K.reg
 

Galois group

$C_2^2.D_4$ (as 8T19):

magma: GaloisGroup(K);
 
sage: K.galois_group(type='pari')
 
gp: polgalois(K.pol)
 
A solvable group of order 32
The 11 conjugacy class representatives for $C_2^3 : C_4 $
Character table for $C_2^3 : C_4 $

Intermediate fields

\(\Q(\sqrt{505}) \), 4.0.1275125.1

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Sibling fields

Galois closure: data not computed
Degree 8 siblings: data not computed
Degree 16 siblings: data not computed

Frobenius cycle types

$p$ 2 3 5 7 11 13 17 19 23 29 31 37 41 43 47 53 59
Cycle type ${\href{/LocalNumberField/2.4.0.1}{4} }{,}\,{\href{/LocalNumberField/2.2.0.1}{2} }{,}\,{\href{/LocalNumberField/2.1.0.1}{1} }^{2}$ ${\href{/LocalNumberField/3.4.0.1}{4} }{,}\,{\href{/LocalNumberField/3.2.0.1}{2} }{,}\,{\href{/LocalNumberField/3.1.0.1}{1} }^{2}$ R ${\href{/LocalNumberField/7.4.0.1}{4} }{,}\,{\href{/LocalNumberField/7.2.0.1}{2} }{,}\,{\href{/LocalNumberField/7.1.0.1}{1} }^{2}$ ${\href{/LocalNumberField/11.2.0.1}{2} }^{4}$ ${\href{/LocalNumberField/13.4.0.1}{4} }^{2}$ ${\href{/LocalNumberField/17.4.0.1}{4} }^{2}$ ${\href{/LocalNumberField/19.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/19.1.0.1}{1} }^{4}$ ${\href{/LocalNumberField/23.4.0.1}{4} }^{2}$ ${\href{/LocalNumberField/29.4.0.1}{4} }^{2}$ ${\href{/LocalNumberField/31.2.0.1}{2} }^{4}$ ${\href{/LocalNumberField/37.4.0.1}{4} }^{2}$ ${\href{/LocalNumberField/41.2.0.1}{2} }^{4}$ ${\href{/LocalNumberField/43.4.0.1}{4} }^{2}$ ${\href{/LocalNumberField/47.4.0.1}{4} }^{2}$ ${\href{/LocalNumberField/53.4.0.1}{4} }{,}\,{\href{/LocalNumberField/53.2.0.1}{2} }{,}\,{\href{/LocalNumberField/53.1.0.1}{1} }^{2}$ ${\href{/LocalNumberField/59.4.0.1}{4} }^{2}$

In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.

magma: p := 7; // to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
magma: idealfactors := Factorization(p*Integers(K)); // get the data
 
magma: [<primefactor[2], Valuation(Norm(primefactor[1]), p)> : primefactor in idealfactors];
 
sage: p = 7; # to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
sage: [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]
 
gp: p = 7; \\ to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
gp: idealfactors = idealprimedec(K, p); \\ get the data
 
gp: vector(length(idealfactors), j, [idealfactors[j][3], idealfactors[j][4]])
 

Local algebras for ramified primes

$p$LabelPolynomial $e$ $f$ $c$ Galois group Slope content
$5$5.4.3.2$x^{4} - 20$$4$$1$$3$$C_4$$[\ ]_{4}$
5.4.3.2$x^{4} - 20$$4$$1$$3$$C_4$$[\ ]_{4}$
$101$101.4.2.1$x^{4} + 505 x^{2} + 91809$$2$$2$$2$$C_2^2$$[\ ]_{2}^{2}$
101.4.2.1$x^{4} + 505 x^{2} + 91809$$2$$2$$2$$C_2^2$$[\ ]_{2}^{2}$

Artin representations

Label Dimension Conductor Defining polynomial of Artin field $G$ Ind $\chi(c)$
* 1.1.1t1.1c1$1$ $1$ $x$ $C_1$ $1$ $1$
* 1.5_101.2t1.1c1$1$ $ 5 \cdot 101 $ $x^{2} - x - 126$ $C_2$ (as 2T1) $1$ $1$
1.101.2t1.1c1$1$ $ 101 $ $x^{2} - x - 25$ $C_2$ (as 2T1) $1$ $1$
1.5.2t1.1c1$1$ $ 5 $ $x^{2} - x - 1$ $C_2$ (as 2T1) $1$ $1$
1.5_101.4t1.3c1$1$ $ 5 \cdot 101 $ $x^{4} - x^{3} + 126 x^{2} - 126 x + 3251$ $C_4$ (as 4T1) $0$ $-1$
1.5.4t1.1c1$1$ $ 5 $ $x^{4} - x^{3} + x^{2} - x + 1$ $C_4$ (as 4T1) $0$ $-1$
1.5.4t1.1c2$1$ $ 5 $ $x^{4} - x^{3} + x^{2} - x + 1$ $C_4$ (as 4T1) $0$ $-1$
1.5_101.4t1.3c2$1$ $ 5 \cdot 101 $ $x^{4} - x^{3} + 126 x^{2} - 126 x + 3251$ $C_4$ (as 4T1) $0$ $-1$
* 2.5e2_101.4t3.1c1$2$ $ 5^{2} \cdot 101 $ $x^{4} - 2 x^{3} + 24 x^{2} - 23 x + 6$ $D_{4}$ (as 4T3) $1$ $-2$
2.5_101.4t3.2c1$2$ $ 5 \cdot 101 $ $x^{4} - 2 x^{3} - 4 x^{2} + 5 x + 5$ $D_{4}$ (as 4T3) $1$ $2$
* 4.5e3_101e2.8t21.1c1$4$ $ 5^{3} \cdot 101^{2}$ $x^{8} - 4 x^{7} + 8 x^{6} - 10 x^{5} + 31 x^{4} - 50 x^{3} + 47 x^{2} - 23 x + 6$ $C_2^3 : C_4 $ (as 8T19) $1$ $0$

Data is given for all irreducible representations of the Galois group for the Galois closure of this field. Those marked with * are summands in the permutation representation coming from this field. Representations which appear with multiplicity greater than one are indicated by exponents on the *.