Normalized defining polynomial
\( x^{8} + 16x^{6} - 8x^{5} + 110x^{4} - 64x^{3} + 384x^{2} - 184x + 213 \)
Invariants
| Degree: | $8$ |
| |
| Signature: | $[0, 4]$ |
| |
| Discriminant: |
\(159539531776\)
\(\medspace = 2^{12}\cdot 79^{4}\)
|
| |
| Root discriminant: | \(25.14\) |
| |
| Galois root discriminant: | $2^{3/2}79^{1/2}\approx 25.13961017995307$ | ||
| Ramified primes: |
\(2\), \(79\)
|
| |
| Discriminant root field: | \(\Q\) | ||
| $\Aut(K/\Q)$: | $C_2$ |
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
| This field has no CM subfields. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $\frac{1}{4}a^{4}-\frac{1}{2}a^{3}-\frac{1}{2}a+\frac{1}{4}$, $\frac{1}{8}a^{5}-\frac{1}{8}a^{4}-\frac{1}{4}a^{3}-\frac{1}{4}a^{2}+\frac{3}{8}a-\frac{3}{8}$, $\frac{1}{8}a^{6}-\frac{1}{8}a^{4}+\frac{1}{8}a^{2}-\frac{1}{2}a-\frac{1}{8}$, $\frac{1}{19192}a^{7}+\frac{78}{2399}a^{6}+\frac{377}{9596}a^{5}-\frac{2115}{19192}a^{4}-\frac{7397}{19192}a^{3}-\frac{2457}{9596}a^{2}+\frac{596}{2399}a+\frac{2687}{19192}$
| Monogenic: | Not computed | |
| Index: | $1$ | |
| Inessential primes: | None |
Class group and class number
| Ideal class group: | $C_{6}$, which has order $6$ |
| |
| Narrow class group: | $C_{6}$, which has order $6$ |
|
Unit group
| Rank: | $3$ |
| |
| Torsion generator: |
\( -1 \)
(order $2$)
|
| |
| Fundamental units: |
$\frac{1}{4798}a^{7}+\frac{97}{19192}a^{6}+\frac{617}{19192}a^{5}+\frac{142}{2399}a^{4}+\frac{1999}{9596}a^{3}+\frac{1935}{19192}a^{2}+\frac{11875}{19192}a+\frac{2975}{9596}$, $\frac{235}{4798}a^{7}+\frac{301}{4798}a^{6}+\frac{15449}{19192}a^{5}+\frac{10267}{19192}a^{4}+\frac{47541}{9596}a^{3}+\frac{19849}{9596}a^{2}+\frac{271675}{19192}a+\frac{114785}{19192}$, $\frac{263}{19192}a^{7}+\frac{245}{4798}a^{6}+\frac{198}{2399}a^{5}+\frac{9919}{19192}a^{4}-\frac{7019}{19192}a^{3}+\frac{15933}{9596}a^{2}-\frac{8743}{9596}a+\frac{15769}{19192}$
|
| |
| Regulator: | \( 104.315395194 \) |
|
Class number formula
\[ \begin{aligned}\lim_{s\to 1} (s-1)\zeta_K(s) =\mathstrut & \frac{2^{r_1}\cdot (2\pi)^{r_2}\cdot R\cdot h}{w\cdot\sqrt{|D|}}\cr \approx\mathstrut &\frac{2^{0}\cdot(2\pi)^{4}\cdot 104.315395194 \cdot 6}{2\cdot\sqrt{159539531776}}\cr\approx \mathstrut & 1.22111053838 \end{aligned}\]
Galois group
| A solvable group of order 24 |
| The 5 conjugacy class representatives for $S_4$ |
| Character table for $S_4$ |
Intermediate fields
| \(\Q(\sqrt{79}) \), 4.0.1264.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Galois closure: | deg 24 |
| Degree 4 sibling: | 4.0.1264.1 |
| Degree 6 siblings: | 6.2.399424.1, 6.2.126217984.1 |
| Degree 12 siblings: | deg 12, deg 12 |
| Minimal sibling: | 4.0.1264.1 |
Frobenius cycle types
| $p$ | $2$ | $3$ | $5$ | $7$ | $11$ | $13$ | $17$ | $19$ | $23$ | $29$ | $31$ | $37$ | $41$ | $43$ | $47$ | $53$ | $59$ |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/padicField/3.3.0.1}{3} }^{2}{,}\,{\href{/padicField/3.1.0.1}{1} }^{2}$ | ${\href{/padicField/5.3.0.1}{3} }^{2}{,}\,{\href{/padicField/5.1.0.1}{1} }^{2}$ | ${\href{/padicField/7.3.0.1}{3} }^{2}{,}\,{\href{/padicField/7.1.0.1}{1} }^{2}$ | ${\href{/padicField/11.2.0.1}{2} }^{4}$ | ${\href{/padicField/13.3.0.1}{3} }^{2}{,}\,{\href{/padicField/13.1.0.1}{1} }^{2}$ | ${\href{/padicField/17.4.0.1}{4} }^{2}$ | ${\href{/padicField/19.4.0.1}{4} }^{2}$ | ${\href{/padicField/23.2.0.1}{2} }^{4}$ | ${\href{/padicField/29.4.0.1}{4} }^{2}$ | ${\href{/padicField/31.4.0.1}{4} }^{2}$ | ${\href{/padicField/37.4.0.1}{4} }^{2}$ | ${\href{/padicField/41.2.0.1}{2} }^{4}$ | ${\href{/padicField/43.2.0.1}{2} }^{4}$ | ${\href{/padicField/47.3.0.1}{3} }^{2}{,}\,{\href{/padicField/47.1.0.1}{1} }^{2}$ | ${\href{/padicField/53.4.0.1}{4} }^{2}$ | ${\href{/padicField/59.3.0.1}{3} }^{2}{,}\,{\href{/padicField/59.1.0.1}{1} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
|
\(2\)
| 2.2.4.12a1.1 | $x^{8} + 4 x^{7} + 12 x^{6} + 22 x^{5} + 31 x^{4} + 30 x^{3} + 22 x^{2} + 10 x + 5$ | $4$ | $2$ | $12$ | $D_4$ | $$[2, 2]^{2}$$ |
|
\(79\)
| 79.1.2.1a1.2 | $x^{2} + 237$ | $2$ | $1$ | $1$ | $C_2$ | $$[\ ]_{2}$$ |
| 79.1.2.1a1.2 | $x^{2} + 237$ | $2$ | $1$ | $1$ | $C_2$ | $$[\ ]_{2}$$ | |
| 79.1.2.1a1.2 | $x^{2} + 237$ | $2$ | $1$ | $1$ | $C_2$ | $$[\ ]_{2}$$ | |
| 79.1.2.1a1.2 | $x^{2} + 237$ | $2$ | $1$ | $1$ | $C_2$ | $$[\ ]_{2}$$ |