Properties

Label 8.0.15890703125.2
Degree $8$
Signature $[0, 4]$
Discriminant $5^{7}\cdot 11^{2}\cdot 41^{2}$
Root discriminant $18.84$
Ramified primes $5, 11, 41$
Class number $4$
Class group $[2, 2]$
Galois group $(C_8:C_2):C_2$ (as 8T16)

Related objects

Downloads

Learn more about

Show commands for: Magma / SageMath / Pari/GP

magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![3931, 1237, -1722, -486, 310, 64, -27, -3, 1]);
 
sage: x = polygen(QQ); K.<a> = NumberField(x^8 - 3*x^7 - 27*x^6 + 64*x^5 + 310*x^4 - 486*x^3 - 1722*x^2 + 1237*x + 3931)
 
gp: K = bnfinit(x^8 - 3*x^7 - 27*x^6 + 64*x^5 + 310*x^4 - 486*x^3 - 1722*x^2 + 1237*x + 3931, 1)
 

Normalized defining polynomial

\( x^{8} - 3 x^{7} - 27 x^{6} + 64 x^{5} + 310 x^{4} - 486 x^{3} - 1722 x^{2} + 1237 x + 3931 \)

magma: DefiningPolynomial(K);
 
sage: K.defining_polynomial()
 
gp: K.pol
 

Invariants

Degree:  $8$
magma: Degree(K);
 
sage: K.degree()
 
gp: poldegree(K.pol)
 
Signature:  $[0, 4]$
magma: Signature(K);
 
sage: K.signature()
 
gp: K.sign
 
Discriminant:  \(15890703125=5^{7}\cdot 11^{2}\cdot 41^{2}\)
magma: Discriminant(Integers(K));
 
sage: K.disc()
 
gp: K.disc
 
Root discriminant:  $18.84$
magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
 
sage: (K.disc().abs())^(1./K.degree())
 
gp: abs(K.disc)^(1/poldegree(K.pol))
 
Ramified primes:  $5, 11, 41$
magma: PrimeDivisors(Discriminant(Integers(K)));
 
sage: K.disc().support()
 
gp: factor(abs(K.disc))[,1]~
 
This field is not Galois over $\Q$.
This is not a CM field.

Integral basis (with respect to field generator \(a\))

$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $\frac{1}{97759} a^{7} + \frac{38564}{97759} a^{6} - \frac{7665}{97759} a^{5} + \frac{7225}{97759} a^{4} + \frac{33735}{97759} a^{3} - \frac{17272}{97759} a^{2} - \frac{1120}{97759} a + \frac{15675}{97759}$

magma: IntegralBasis(K);
 
sage: K.integral_basis()
 
gp: K.zk
 

Class group and class number

$C_{2}\times C_{2}$, which has order $4$

magma: ClassGroup(K);
 
sage: K.class_group().invariants()
 
gp: K.clgp
 

Unit group

magma: UK, f := UnitGroup(K);
 
sage: UK = K.unit_group()
 
Rank:  $3$
magma: UnitRank(K);
 
sage: UK.rank()
 
gp: K.fu
 
Torsion generator:  \( \frac{4710}{97759} a^{7} + \frac{218}{97759} a^{6} - \frac{126838}{97759} a^{5} - \frac{88141}{97759} a^{4} + \frac{1206583}{97759} a^{3} + \frac{1450753}{97759} a^{2} - \frac{3906574}{97759} a - \frac{6333130}{97759} \) (order $10$)
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
 
sage: UK.torsion_generator()
 
gp: K.tu[2]
 
Fundamental units:  Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right
magma: [K!f(g): g in Generators(UK)];
 
sage: UK.fundamental_units()
 
gp: K.fu
 
Regulator:  \( 53.9611950154 \)
magma: Regulator(K);
 
sage: K.regulator()
 
gp: K.reg
 

Galois group

$C_2^3.C_4$ (as 8T16):

magma: GaloisGroup(K);
 
sage: K.galois_group(type='pari')
 
gp: polgalois(K.pol)
 
A solvable group of order 32
The 11 conjugacy class representatives for $(C_8:C_2):C_2$
Character table for $(C_8:C_2):C_2$

Intermediate fields

\(\Q(\sqrt{5}) \), \(\Q(\zeta_{5})\)

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Sibling fields

Galois closure: data not computed
Degree 8 sibling: data not computed
Degree 16 siblings: data not computed

Frobenius cycle types

$p$ 2 3 5 7 11 13 17 19 23 29 31 37 41 43 47 53 59
Cycle type ${\href{/LocalNumberField/2.8.0.1}{8} }$ ${\href{/LocalNumberField/3.8.0.1}{8} }$ R ${\href{/LocalNumberField/7.8.0.1}{8} }$ R ${\href{/LocalNumberField/13.8.0.1}{8} }$ ${\href{/LocalNumberField/17.8.0.1}{8} }$ ${\href{/LocalNumberField/19.2.0.1}{2} }^{4}$ ${\href{/LocalNumberField/23.8.0.1}{8} }$ ${\href{/LocalNumberField/29.2.0.1}{2} }^{4}$ ${\href{/LocalNumberField/31.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/31.1.0.1}{1} }^{4}$ ${\href{/LocalNumberField/37.8.0.1}{8} }$ R ${\href{/LocalNumberField/43.8.0.1}{8} }$ ${\href{/LocalNumberField/47.8.0.1}{8} }$ ${\href{/LocalNumberField/53.8.0.1}{8} }$ ${\href{/LocalNumberField/59.4.0.1}{4} }^{2}$

In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.

magma: p := 7; // to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
magma: idealfactors := Factorization(p*Integers(K)); // get the data
 
magma: [<primefactor[2], Valuation(Norm(primefactor[1]), p)> : primefactor in idealfactors];
 
sage: p = 7; # to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
sage: [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]
 
gp: p = 7; \\ to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
gp: idealfactors = idealprimedec(K, p); \\ get the data
 
gp: vector(length(idealfactors), j, [idealfactors[j][3], idealfactors[j][4]])
 

Local algebras for ramified primes

$p$LabelPolynomial $e$ $f$ $c$ Galois group Slope content
$5$5.8.7.2$x^{8} - 20$$8$$1$$7$$C_8:C_2$$[\ ]_{8}^{2}$
$11$11.2.1.1$x^{2} - 11$$2$$1$$1$$C_2$$[\ ]_{2}$
11.2.0.1$x^{2} - x + 7$$1$$2$$0$$C_2$$[\ ]^{2}$
11.2.0.1$x^{2} - x + 7$$1$$2$$0$$C_2$$[\ ]^{2}$
11.2.1.1$x^{2} - 11$$2$$1$$1$$C_2$$[\ ]_{2}$
41Data not computed

Artin representations

Label Dimension Conductor Defining polynomial of Artin field $G$ Ind $\chi(c)$
* 1.1.1t1.1c1$1$ $1$ $x$ $C_1$ $1$ $1$
1.5_11.2t1.1c1$1$ $ 5 \cdot 11 $ $x^{2} - x + 14$ $C_2$ (as 2T1) $1$ $-1$
* 1.5.2t1.1c1$1$ $ 5 $ $x^{2} - x - 1$ $C_2$ (as 2T1) $1$ $1$
1.11.2t1.1c1$1$ $ 11 $ $x^{2} - x + 3$ $C_2$ (as 2T1) $1$ $-1$
1.5_11.4t1.1c1$1$ $ 5 \cdot 11 $ $x^{4} - x^{3} - 14 x^{2} + 14 x + 31$ $C_4$ (as 4T1) $0$ $1$
* 1.5.4t1.1c1$1$ $ 5 $ $x^{4} - x^{3} + x^{2} - x + 1$ $C_4$ (as 4T1) $0$ $-1$
1.5_11.4t1.1c2$1$ $ 5 \cdot 11 $ $x^{4} - x^{3} - 14 x^{2} + 14 x + 31$ $C_4$ (as 4T1) $0$ $1$
* 1.5.4t1.1c2$1$ $ 5 $ $x^{4} - x^{3} + x^{2} - x + 1$ $C_4$ (as 4T1) $0$ $-1$
2.5_11_41e2.4t3.2c1$2$ $ 5 \cdot 11 \cdot 41^{2}$ $x^{4} - x^{3} - 29 x^{2} + 71 x + 531$ $D_{4}$ (as 4T3) $1$ $0$
2.5e2_11_41e2.4t3.2c1$2$ $ 5^{2} \cdot 11 \cdot 41^{2}$ $x^{4} - x^{3} - 44 x^{2} + 304 x + 2216$ $D_{4}$ (as 4T3) $1$ $0$
* 4.5e4_11e2_41e2.8t16.5c1$4$ $ 5^{4} \cdot 11^{2} \cdot 41^{2}$ $x^{8} - 3 x^{7} - 27 x^{6} + 64 x^{5} + 310 x^{4} - 486 x^{3} - 1722 x^{2} + 1237 x + 3931$ $(C_8:C_2):C_2$ (as 8T16) $1$ $0$

Data is given for all irreducible representations of the Galois group for the Galois closure of this field. Those marked with * are summands in the permutation representation coming from this field. Representations which appear with multiplicity greater than one are indicated by exponents on the *.