Normalized defining polynomial
\( x^{8} - x^{7} + 2480 x^{6} + 396110 x^{5} - 36137047 x^{4} - 2238581269 x^{3} + 127500008326 x^{2} - 272737761048 x + 549334612224 \)
Invariants
| Degree: | $8$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 4]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(154691088673896293052793942309897=97^{7}\cdot 409^{7}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $10{,}560.47$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $97, 409$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois and abelian over $\Q$. | |||
| Conductor: | \(39673=97\cdot 409\) | ||
| Dirichlet character group: | not computed | ||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $\frac{1}{2} a^{2} - \frac{1}{2} a$, $\frac{1}{6} a^{3} - \frac{1}{6} a$, $\frac{1}{168} a^{4} + \frac{1}{84} a^{3} + \frac{5}{24} a^{2} + \frac{17}{84} a - \frac{3}{7}$, $\frac{1}{3528} a^{5} + \frac{1}{504} a^{4} + \frac{101}{3528} a^{3} + \frac{461}{3528} a^{2} - \frac{5}{84} a + \frac{16}{49}$, $\frac{1}{1608768} a^{6} - \frac{1}{9408} a^{5} - \frac{767}{1608768} a^{4} + \frac{7219}{178752} a^{3} + \frac{68675}{804384} a^{2} - \frac{2357}{22344} a - \frac{538}{2793}$, $\frac{1}{47147955507910027427328} a^{7} - \frac{220042713197627}{11786988876977506856832} a^{6} - \frac{1261924677825340451}{11786988876977506856832} a^{5} + \frac{3337644506762967971}{1240735671260790195456} a^{4} - \frac{2941543873945570747229}{47147955507910027427328} a^{3} - \frac{3293716389667405454923}{23573977753955013713664} a^{2} + \frac{35604575298436388933}{218277571795879756608} a - \frac{8044878861660533035}{20463522355863727182}$
Class group and class number
$C_{2708341656}$, which has order $2708341656$ (assuming GRH)
Unit group
| Rank: | $3$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 24968773.6087 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A cyclic group of order 8 |
| The 8 conjugacy class representatives for $C_8$ |
| Character table for $C_8$ |
Intermediate fields
| \(\Q(\sqrt{39673}) \), 4.4.62443196514217.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.1.0.1}{1} }^{8}$ | ${\href{/LocalNumberField/3.1.0.1}{1} }^{8}$ | ${\href{/LocalNumberField/5.8.0.1}{8} }$ | ${\href{/LocalNumberField/7.1.0.1}{1} }^{8}$ | ${\href{/LocalNumberField/11.8.0.1}{8} }$ | ${\href{/LocalNumberField/13.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/17.8.0.1}{8} }$ | ${\href{/LocalNumberField/19.1.0.1}{1} }^{8}$ | ${\href{/LocalNumberField/23.8.0.1}{8} }$ | ${\href{/LocalNumberField/29.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/31.8.0.1}{8} }$ | ${\href{/LocalNumberField/37.4.0.1}{4} }^{2}$ | ${\href{/LocalNumberField/41.8.0.1}{8} }$ | ${\href{/LocalNumberField/43.8.0.1}{8} }$ | ${\href{/LocalNumberField/47.8.0.1}{8} }$ | ${\href{/LocalNumberField/53.4.0.1}{4} }^{2}$ | ${\href{/LocalNumberField/59.4.0.1}{4} }^{2}$ |
Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $97$ | 97.8.7.6 | $x^{8} + 12125$ | $8$ | $1$ | $7$ | $C_8$ | $[\ ]_{8}$ |
| 409 | Data not computed | ||||||