Normalized defining polynomial
\( x^{8} - x^{7} + 2480 x^{6} + 396110 x^{5} - 11857171 x^{4} + 1567646351 x^{3} + 82900732570 x^{2} - 2598191444700 x + 321922277979336 \)
Invariants
| Degree: | $8$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 4]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(154691088673896293052793942309897=97^{7}\cdot 409^{7}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $10{,}560.47$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $97, 409$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois and abelian over $\Q$. | |||
| Conductor: | \(39673=97\cdot 409\) | ||
| Dirichlet character group: | not computed | ||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $\frac{1}{2} a^{2} - \frac{1}{2} a$, $\frac{1}{12} a^{3} + \frac{5}{12} a - \frac{1}{2}$, $\frac{1}{504} a^{4} + \frac{5}{252} a^{3} - \frac{73}{504} a^{2} - \frac{113}{252} a + \frac{2}{7}$, $\frac{1}{2016} a^{5} - \frac{1}{2016} a^{4} + \frac{3}{224} a^{3} - \frac{179}{2016} a^{2} + \frac{227}{504} a + \frac{19}{56}$, $\frac{1}{2201472} a^{6} - \frac{5}{45864} a^{5} + \frac{365}{1100736} a^{4} + \frac{463}{91728} a^{3} + \frac{247705}{2201472} a^{2} - \frac{2453}{10192} a + \frac{4873}{20384}$, $\frac{1}{795194845604104356343296} a^{7} - \frac{16238572258845733}{397597422802052178171648} a^{6} + \frac{65984323849704407375}{397597422802052178171648} a^{5} + \frac{9790416884795885977}{49699677850256522271456} a^{4} - \frac{28085438434528701928043}{795194845604104356343296} a^{3} - \frac{3302625081655234891147}{30584417138619398320896} a^{2} - \frac{507372540349449558461}{22088745711225121009536} a + \frac{2296134580854200465}{14105201603592031296}$
Class group and class number
$C_{1166589912}$, which has order $1166589912$ (assuming GRH)
Unit group
| Rank: | $3$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 24968773.6087 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A cyclic group of order 8 |
| The 8 conjugacy class representatives for $C_8$ |
| Character table for $C_8$ |
Intermediate fields
| \(\Q(\sqrt{39673}) \), 4.4.62443196514217.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.1.0.1}{1} }^{8}$ | ${\href{/LocalNumberField/3.1.0.1}{1} }^{8}$ | ${\href{/LocalNumberField/5.8.0.1}{8} }$ | ${\href{/LocalNumberField/7.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/11.8.0.1}{8} }$ | ${\href{/LocalNumberField/13.1.0.1}{1} }^{8}$ | ${\href{/LocalNumberField/17.8.0.1}{8} }$ | ${\href{/LocalNumberField/19.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/23.8.0.1}{8} }$ | ${\href{/LocalNumberField/29.1.0.1}{1} }^{8}$ | ${\href{/LocalNumberField/31.8.0.1}{8} }$ | ${\href{/LocalNumberField/37.4.0.1}{4} }^{2}$ | ${\href{/LocalNumberField/41.8.0.1}{8} }$ | ${\href{/LocalNumberField/43.8.0.1}{8} }$ | ${\href{/LocalNumberField/47.8.0.1}{8} }$ | ${\href{/LocalNumberField/53.4.0.1}{4} }^{2}$ | ${\href{/LocalNumberField/59.4.0.1}{4} }^{2}$ |
Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $97$ | 97.8.7.8 | $x^{8} + 7578125$ | $8$ | $1$ | $7$ | $C_8$ | $[\ ]_{8}$ |
| 409 | Data not computed | ||||||