Normalized defining polynomial
\( x^{8} + 70 x^{6} + 1453 x^{4} - 3164 x^{2} + 12996 \)
Invariants
| Degree: | $8$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 4]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(15422842149277696=2^{12}\cdot 7^{4}\cdot 199^{4}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $105.57$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 7, 199$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois over $\Q$. | |||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $\frac{1}{4} a^{4} - \frac{1}{2} a^{3} + \frac{1}{4} a^{2} - \frac{1}{2}$, $\frac{1}{4} a^{5} + \frac{1}{4} a^{3} - \frac{1}{2} a^{2} - \frac{1}{2} a$, $\frac{1}{66592} a^{6} - \frac{31}{2081} a^{4} - \frac{1}{2} a^{3} - \frac{27163}{66592} a^{2} - \frac{3521}{33296}$, $\frac{1}{3795744} a^{7} + \frac{18605}{474468} a^{5} + \frac{455629}{3795744} a^{3} + \frac{712343}{1897872} a$
Class group and class number
$C_{12}\times C_{120}$, which has order $1440$
Unit group
| Rank: | $3$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | \( \frac{59}{474468} a^{7} + \frac{1951}{237234} a^{5} + \frac{74669}{474468} a^{3} - \frac{199415}{237234} a - 1 \), \( \frac{2915}{1897872} a^{7} - \frac{77}{33296} a^{6} + \frac{12803}{118617} a^{5} - \frac{857}{4162} a^{4} + \frac{4392815}{1897872} a^{3} - \frac{155929}{33296} a^{2} + \frac{2105749}{948936} a + \frac{71341}{16648} \), \( \frac{384}{2081} a^{6} + \frac{18624}{2081} a^{4} - \frac{42240}{2081} a^{2} + \frac{157247}{2081} \) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 932.406875001 \) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 8 |
| The 5 conjugacy class representatives for $D_4$ |
| Character table for $D_4$ |
Intermediate fields
| \(\Q(\sqrt{2786}) \), \(\Q(\sqrt{2}) \), \(\Q(\sqrt{1393}) \), \(\Q(\sqrt{2}, \sqrt{1393})\), 4.0.89152.1 x2, 4.0.15523592.1 x2 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 4 siblings: | 4.0.15523592.1, 4.0.89152.1 |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/LocalNumberField/3.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/5.4.0.1}{4} }^{2}$ | R | ${\href{/LocalNumberField/11.4.0.1}{4} }^{2}$ | ${\href{/LocalNumberField/13.4.0.1}{4} }^{2}$ | ${\href{/LocalNumberField/17.1.0.1}{1} }^{8}$ | ${\href{/LocalNumberField/19.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/23.1.0.1}{1} }^{8}$ | ${\href{/LocalNumberField/29.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/31.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/37.4.0.1}{4} }^{2}$ | ${\href{/LocalNumberField/41.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/43.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/47.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/53.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/59.2.0.1}{2} }^{4}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.2.3.1 | $x^{2} + 14$ | $2$ | $1$ | $3$ | $C_2$ | $[3]$ |
| 2.2.3.1 | $x^{2} + 14$ | $2$ | $1$ | $3$ | $C_2$ | $[3]$ | |
| 2.2.3.1 | $x^{2} + 14$ | $2$ | $1$ | $3$ | $C_2$ | $[3]$ | |
| 2.2.3.1 | $x^{2} + 14$ | $2$ | $1$ | $3$ | $C_2$ | $[3]$ | |
| $7$ | 7.4.2.1 | $x^{4} + 35 x^{2} + 441$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ |
| 7.4.2.1 | $x^{4} + 35 x^{2} + 441$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| $199$ | 199.2.1.1 | $x^{2} - 199$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ |
| 199.2.1.1 | $x^{2} - 199$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 199.2.1.1 | $x^{2} - 199$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 199.2.1.1 | $x^{2} - 199$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ |
Artin representations
| Label | Dimension | Conductor | Defining polynomial of Artin field | $G$ | Ind | $\chi(c)$ | |
|---|---|---|---|---|---|---|---|
| * | 1.1.1t1.1c1 | $1$ | $1$ | $x$ | $C_1$ | $1$ | $1$ |
| * | 1.7_199.2t1.1c1 | $1$ | $ 7 \cdot 199 $ | $x^{2} - x - 348$ | $C_2$ (as 2T1) | $1$ | $1$ |
| * | 1.2e3.2t1.1c1 | $1$ | $ 2^{3}$ | $x^{2} - 2$ | $C_2$ (as 2T1) | $1$ | $1$ |
| * | 1.2e3_7_199.2t1.1c1 | $1$ | $ 2^{3} \cdot 7 \cdot 199 $ | $x^{2} - 2786$ | $C_2$ (as 2T1) | $1$ | $1$ |
| *2 | 2.2e3_7_199.4t3.10c1 | $2$ | $ 2^{3} \cdot 7 \cdot 199 $ | $x^{8} + 70 x^{6} + 1453 x^{4} - 3164 x^{2} + 12996$ | $D_4$ (as 8T4) | $1$ | $-2$ |