Properties

Label 8.0.151939915084881.1
Degree $8$
Signature $[0, 4]$
Discriminant $3^{6}\cdot 7^{6}\cdot 11^{6}$
Root discriminant $59.25$
Ramified primes $3, 7, 11$
Class number $72$
Class group $[2, 6, 6]$
Galois group $Q_8$ (as 8T5)

Related objects

Downloads

Learn more about

Show commands for: Magma / SageMath / Pari/GP

magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![17623, 5545, 842, 2173, 529, 71, 50, -1, 1]);
 
sage: x = polygen(QQ); K.<a> = NumberField(x^8 - x^7 + 50*x^6 + 71*x^5 + 529*x^4 + 2173*x^3 + 842*x^2 + 5545*x + 17623)
 
gp: K = bnfinit(x^8 - x^7 + 50*x^6 + 71*x^5 + 529*x^4 + 2173*x^3 + 842*x^2 + 5545*x + 17623, 1)
 

Normalized defining polynomial

\( x^{8} - x^{7} + 50 x^{6} + 71 x^{5} + 529 x^{4} + 2173 x^{3} + 842 x^{2} + 5545 x + 17623 \)

magma: DefiningPolynomial(K);
 
sage: K.defining_polynomial()
 
gp: K.pol
 

Invariants

Degree:  $8$
magma: Degree(K);
 
sage: K.degree()
 
gp: poldegree(K.pol)
 
Signature:  $[0, 4]$
magma: Signature(K);
 
sage: K.signature()
 
gp: K.sign
 
Discriminant:  \(151939915084881=3^{6}\cdot 7^{6}\cdot 11^{6}\)
magma: Discriminant(Integers(K));
 
sage: K.disc()
 
gp: K.disc
 
Root discriminant:  $59.25$
magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
 
sage: (K.disc().abs())^(1./K.degree())
 
gp: abs(K.disc)^(1/poldegree(K.pol))
 
Ramified primes:  $3, 7, 11$
magma: PrimeDivisors(Discriminant(Integers(K)));
 
sage: K.disc().support()
 
gp: factor(abs(K.disc))[,1]~
 
This field is Galois over $\Q$.
This is a CM field.

Integral basis (with respect to field generator \(a\))

$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $\frac{1}{17} a^{6} + \frac{5}{17} a^{5} + \frac{3}{17} a^{4} - \frac{7}{17} a^{3} + \frac{1}{17} a^{2} - \frac{2}{17} a + \frac{5}{17}$, $\frac{1}{36270630857} a^{7} + \frac{374998582}{36270630857} a^{6} + \frac{17017736938}{36270630857} a^{5} + \frac{14057084747}{36270630857} a^{4} - \frac{15124706705}{36270630857} a^{3} + \frac{4190455030}{36270630857} a^{2} - \frac{10103876566}{36270630857} a - \frac{12323908292}{36270630857}$

magma: IntegralBasis(K);
 
sage: K.integral_basis()
 
gp: K.zk
 

Class group and class number

$C_{2}\times C_{6}\times C_{6}$, which has order $72$

magma: ClassGroup(K);
 
sage: K.class_group().invariants()
 
gp: K.clgp
 

Unit group

magma: UK, f := UnitGroup(K);
 
sage: UK = K.unit_group()
 
Rank:  $3$
magma: UnitRank(K);
 
sage: UK.rank()
 
gp: K.fu
 
Torsion generator:  \( -1 \) (order $2$)
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
 
sage: UK.torsion_generator()
 
gp: K.tu[2]
 
Fundamental units:  Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right
magma: [K!f(g): g in Generators(UK)];
 
sage: UK.fundamental_units()
 
gp: K.fu
 
Regulator:  \( 104.827448547 \)
magma: Regulator(K);
 
sage: K.regulator()
 
gp: K.reg
 

Galois group

$Q_8$ (as 8T5):

magma: GaloisGroup(K);
 
sage: K.galois_group(type='pari')
 
gp: polgalois(K.pol)
 
A solvable group of order 8
The 5 conjugacy class representatives for $Q_8$
Character table for $Q_8$

Intermediate fields

\(\Q(\sqrt{33}) \), \(\Q(\sqrt{21}) \), \(\Q(\sqrt{77}) \), \(\Q(\sqrt{21}, \sqrt{33})\)

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Frobenius cycle types

$p$ 2 3 5 7 11 13 17 19 23 29 31 37 41 43 47 53 59
Cycle type ${\href{/LocalNumberField/2.4.0.1}{4} }^{2}$ R ${\href{/LocalNumberField/5.4.0.1}{4} }^{2}$ R R ${\href{/LocalNumberField/13.4.0.1}{4} }^{2}$ ${\href{/LocalNumberField/17.1.0.1}{1} }^{8}$ ${\href{/LocalNumberField/19.4.0.1}{4} }^{2}$ ${\href{/LocalNumberField/23.4.0.1}{4} }^{2}$ ${\href{/LocalNumberField/29.4.0.1}{4} }^{2}$ ${\href{/LocalNumberField/31.4.0.1}{4} }^{2}$ ${\href{/LocalNumberField/37.1.0.1}{1} }^{8}$ ${\href{/LocalNumberField/41.1.0.1}{1} }^{8}$ ${\href{/LocalNumberField/43.4.0.1}{4} }^{2}$ ${\href{/LocalNumberField/47.4.0.1}{4} }^{2}$ ${\href{/LocalNumberField/53.4.0.1}{4} }^{2}$ ${\href{/LocalNumberField/59.4.0.1}{4} }^{2}$

In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.

magma: p := 7; // to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
magma: idealfactors := Factorization(p*Integers(K)); // get the data
 
magma: [<primefactor[2], Valuation(Norm(primefactor[1]), p)> : primefactor in idealfactors];
 
sage: p = 7; # to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
sage: [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]
 
gp: p = 7; \\ to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
gp: idealfactors = idealprimedec(K, p); \\ get the data
 
gp: vector(length(idealfactors), j, [idealfactors[j][3], idealfactors[j][4]])
 

Local algebras for ramified primes

$p$LabelPolynomial $e$ $f$ $c$ Galois group Slope content
$3$3.8.6.1$x^{8} + 9 x^{4} + 36$$4$$2$$6$$Q_8$$[\ ]_{4}^{2}$
$7$7.8.6.1$x^{8} + 35 x^{4} + 441$$4$$2$$6$$Q_8$$[\ ]_{4}^{2}$
$11$11.8.6.1$x^{8} + 143 x^{4} + 5929$$4$$2$$6$$Q_8$$[\ ]_{4}^{2}$

Artin representations

Label Dimension Conductor Defining polynomial of Artin field $G$ Ind $\chi(c)$
* 1.1.1t1.1c1$1$ $1$ $x$ $C_1$ $1$ $1$
* 1.7_11.2t1.1c1$1$ $ 7 \cdot 11 $ $x^{2} - x - 19$ $C_2$ (as 2T1) $1$ $1$
* 1.3_11.2t1.1c1$1$ $ 3 \cdot 11 $ $x^{2} - x - 8$ $C_2$ (as 2T1) $1$ $1$
* 1.3_7.2t1.1c1$1$ $ 3 \cdot 7 $ $x^{2} - x - 5$ $C_2$ (as 2T1) $1$ $1$
*2 2.3e2_7e2_11e2.8t5.2c1$2$ $ 3^{2} \cdot 7^{2} \cdot 11^{2}$ $x^{8} - x^{7} + 50 x^{6} + 71 x^{5} + 529 x^{4} + 2173 x^{3} + 842 x^{2} + 5545 x + 17623$ $Q_8$ (as 8T5) $-1$ $-2$

Data is given for all irreducible representations of the Galois group for the Galois closure of this field. Those marked with * are summands in the permutation representation coming from this field. Representations which appear with multiplicity greater than one are indicated by exponents on the *.