Normalized defining polynomial
\( x^{8} - x^{7} + 50x^{6} + 71x^{5} + 529x^{4} + 2173x^{3} + 842x^{2} + 5545x + 17623 \)
Invariants
Degree: | $8$ | sage: K.degree()
gp: poldegree(K.pol)
magma: Degree(K);
oscar: degree(K)
| |
Signature: | $[0, 4]$ | sage: K.signature()
gp: K.sign
magma: Signature(K);
oscar: signature(K)
| |
Discriminant: |
\(151939915084881\)
\(\medspace = 3^{6}\cdot 7^{6}\cdot 11^{6}\)
| sage: K.disc()
gp: K.disc
magma: OK := Integers(K); Discriminant(OK);
oscar: OK = ring_of_integers(K); discriminant(OK)
| |
Root discriminant: | \(59.25\) | sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
magma: Abs(Discriminant(OK))^(1/Degree(K));
oscar: (1.0 * dK)^(1/degree(K))
| |
Ramified primes: |
\(3\), \(7\), \(11\)
| sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
magma: PrimeDivisors(Discriminant(OK));
oscar: prime_divisors(discriminant((OK)))
| |
Discriminant root field: | \(\Q\) | ||
$\card{ \Gal(K/\Q) }$: | $8$ | sage: K.automorphisms()
magma: Automorphisms(K);
oscar: automorphisms(K)
| |
This field is Galois over $\Q$. | |||
This is a CM field. | |||
Reflex fields: | 8.0.151939915084881.1$^{8}$ |
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $\frac{1}{17}a^{6}+\frac{5}{17}a^{5}+\frac{3}{17}a^{4}-\frac{7}{17}a^{3}+\frac{1}{17}a^{2}-\frac{2}{17}a+\frac{5}{17}$, $\frac{1}{36270630857}a^{7}+\frac{374998582}{36270630857}a^{6}+\frac{17017736938}{36270630857}a^{5}+\frac{14057084747}{36270630857}a^{4}-\frac{15124706705}{36270630857}a^{3}+\frac{4190455030}{36270630857}a^{2}-\frac{10103876566}{36270630857}a-\frac{12323908292}{36270630857}$
Monogenic: | Not computed | |
Index: | $1$ | |
Inessential primes: | None |
Class group and class number
$C_{2}\times C_{6}\times C_{6}$, which has order $72$
Unit group
Rank: | $3$ | sage: UK.rank()
gp: K.fu
magma: UnitRank(K);
oscar: rank(UK)
| |
Torsion generator: |
\( -1 \)
(order $2$)
| sage: UK.torsion_generator()
gp: K.tu[2]
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
oscar: torsion_units_generator(OK)
| |
Fundamental units: |
$\frac{5745961}{36270630857}a^{7}-\frac{6527976}{36270630857}a^{6}+\frac{222373728}{36270630857}a^{5}+\frac{298263703}{36270630857}a^{4}+\frac{1372164699}{36270630857}a^{3}+\frac{7555042615}{36270630857}a^{2}-\frac{8494818489}{36270630857}a-\frac{9756958913}{36270630857}$, $\frac{16383577}{36270630857}a^{7}-\frac{10783786}{36270630857}a^{6}+\frac{727410945}{36270630857}a^{5}+\frac{1312883715}{36270630857}a^{4}+\frac{5457923391}{36270630857}a^{3}+\frac{24391519775}{36270630857}a^{2}-\frac{23054803265}{36270630857}a-\frac{99979153583}{36270630857}$, $\frac{5149937}{36270630857}a^{7}+\frac{240974}{36270630857}a^{6}+\frac{89606258}{36270630857}a^{5}+\frac{396628742}{36270630857}a^{4}-\frac{230494035}{36270630857}a^{3}-\frac{38679001}{36270630857}a^{2}+\frac{5709942646}{36270630857}a-\frac{5048433697}{36270630857}$
| sage: UK.fundamental_units()
gp: K.fu
magma: [K|fUK(g): g in Generators(UK)];
oscar: [K(fUK(a)) for a in gens(UK)]
| |
Regulator: | \( 104.827448547 \) | sage: K.regulator()
gp: K.reg
magma: Regulator(K);
oscar: regulator(K)
|
Class number formula
\[ \begin{aligned}\lim_{s\to 1} (s-1)\zeta_K(s) =\mathstrut & \frac{2^{r_1}\cdot (2\pi)^{r_2}\cdot R\cdot h}{w\cdot\sqrt{|D|}}\cr \approx\mathstrut &\frac{2^{0}\cdot(2\pi)^{4}\cdot 104.827448547 \cdot 72}{2\cdot\sqrt{151939915084881}}\cr\approx \mathstrut & 0.477156725886 \end{aligned}\]
Galois group
A solvable group of order 8 |
The 5 conjugacy class representatives for $Q_8$ |
Character table for $Q_8$ |
Intermediate fields
\(\Q(\sqrt{33}) \), \(\Q(\sqrt{21}) \), \(\Q(\sqrt{77}) \), \(\Q(\sqrt{21}, \sqrt{33})\) |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
$p$ | $2$ | $3$ | $5$ | $7$ | $11$ | $13$ | $17$ | $19$ | $23$ | $29$ | $31$ | $37$ | $41$ | $43$ | $47$ | $53$ | $59$ |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Cycle type | ${\href{/padicField/2.4.0.1}{4} }^{2}$ | R | ${\href{/padicField/5.4.0.1}{4} }^{2}$ | R | R | ${\href{/padicField/13.4.0.1}{4} }^{2}$ | ${\href{/padicField/17.1.0.1}{1} }^{8}$ | ${\href{/padicField/19.4.0.1}{4} }^{2}$ | ${\href{/padicField/23.4.0.1}{4} }^{2}$ | ${\href{/padicField/29.4.0.1}{4} }^{2}$ | ${\href{/padicField/31.4.0.1}{4} }^{2}$ | ${\href{/padicField/37.1.0.1}{1} }^{8}$ | ${\href{/padicField/41.1.0.1}{1} }^{8}$ | ${\href{/padicField/43.4.0.1}{4} }^{2}$ | ${\href{/padicField/47.4.0.1}{4} }^{2}$ | ${\href{/padicField/53.4.0.1}{4} }^{2}$ | ${\href{/padicField/59.4.0.1}{4} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
$p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
---|---|---|---|---|---|---|---|
\(3\)
| 3.8.6.1 | $x^{8} + 9$ | $4$ | $2$ | $6$ | $Q_8$ | $[\ ]_{4}^{2}$ |
\(7\)
| 7.8.6.1 | $x^{8} + 14 x^{4} - 245$ | $4$ | $2$ | $6$ | $Q_8$ | $[\ ]_{4}^{2}$ |
\(11\)
| 11.8.6.1 | $x^{8} - 110 x^{4} - 16819$ | $4$ | $2$ | $6$ | $Q_8$ | $[\ ]_{4}^{2}$ |
Artin representations
Label | Dimension | Conductor | Artin stem field | $G$ | Ind | $\chi(c)$ | |
---|---|---|---|---|---|---|---|
* | 1.1.1t1.a.a | $1$ | $1$ | \(\Q\) | $C_1$ | $1$ | $1$ |
* | 1.77.2t1.a.a | $1$ | $ 7 \cdot 11 $ | \(\Q(\sqrt{77}) \) | $C_2$ (as 2T1) | $1$ | $1$ |
* | 1.33.2t1.a.a | $1$ | $ 3 \cdot 11 $ | \(\Q(\sqrt{33}) \) | $C_2$ (as 2T1) | $1$ | $1$ |
* | 1.21.2t1.a.a | $1$ | $ 3 \cdot 7 $ | \(\Q(\sqrt{21}) \) | $C_2$ (as 2T1) | $1$ | $1$ |
*2 | 2.53361.8t5.b.a | $2$ | $ 3^{2} \cdot 7^{2} \cdot 11^{2}$ | 8.0.151939915084881.1 | $Q_8$ (as 8T5) | $-1$ | $-2$ |