Normalized defining polynomial
\( x^{8} - x^{7} + 3434 x^{6} + 466106 x^{5} - 46189007 x^{4} + 4853572775 x^{3} + 291843263844 x^{2} - 15966068329056 x + 188675512537088 \)
Invariants
| Degree: | $8$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 4]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(1510269940117393787434340294825833=137^{7}\cdot 401^{7}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $14{,}040.48$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $137, 401$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois and abelian over $\Q$. | |||
| Conductor: | \(54937=137\cdot 401\) | ||
| Dirichlet character group: | not computed | ||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $\frac{1}{2} a^{2} - \frac{1}{2} a$, $\frac{1}{4} a^{3} - \frac{1}{4} a$, $\frac{1}{72} a^{4} + \frac{1}{18} a^{3} + \frac{7}{72} a^{2} + \frac{5}{18} a - \frac{1}{9}$, $\frac{1}{4752} a^{5} + \frac{1}{528} a^{4} + \frac{17}{176} a^{3} + \frac{271}{4752} a^{2} - \frac{11}{108} a - \frac{115}{297}$, $\frac{1}{85536} a^{6} + \frac{1}{21384} a^{5} - \frac{19}{14256} a^{4} - \frac{5}{243} a^{3} + \frac{75}{352} a^{2} + \frac{8791}{21384} a - \frac{26}{2673}$, $\frac{1}{764276271197559717482531712} a^{7} - \frac{28969538078569777055}{5789971751496664526382816} a^{6} + \frac{27513051045841182292255}{382138135598779858741265856} a^{5} + \frac{136483732650145725079913}{23883633474923741171329116} a^{4} + \frac{22950815160397385621293793}{764276271197559717482531712} a^{3} - \frac{8469161268257666994779225}{191069067799389929370632928} a^{2} + \frac{3808947918324106452182261}{23883633474923741171329116} a + \frac{2732529387438021855710183}{5970908368730935292832279}$
Class group and class number
$C_{1031972968}$, which has order $1031972968$ (assuming GRH)
Unit group
| Rank: | $3$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 7488559.87237 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A cyclic group of order 8 |
| The 8 conjugacy class representatives for $C_8$ |
| Character table for $C_8$ |
Intermediate fields
| \(\Q(\sqrt{54937}) \), 4.4.165803929634953.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.1.0.1}{1} }^{8}$ | ${\href{/LocalNumberField/3.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/5.8.0.1}{8} }$ | ${\href{/LocalNumberField/7.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/11.1.0.1}{1} }^{8}$ | ${\href{/LocalNumberField/13.4.0.1}{4} }^{2}$ | ${\href{/LocalNumberField/17.8.0.1}{8} }$ | ${\href{/LocalNumberField/19.8.0.1}{8} }$ | ${\href{/LocalNumberField/23.4.0.1}{4} }^{2}$ | ${\href{/LocalNumberField/29.8.0.1}{8} }$ | ${\href{/LocalNumberField/31.4.0.1}{4} }^{2}$ | ${\href{/LocalNumberField/37.8.0.1}{8} }$ | ${\href{/LocalNumberField/41.8.0.1}{8} }$ | ${\href{/LocalNumberField/43.8.0.1}{8} }$ | ${\href{/LocalNumberField/47.8.0.1}{8} }$ | ${\href{/LocalNumberField/53.4.0.1}{4} }^{2}$ | ${\href{/LocalNumberField/59.8.0.1}{8} }$ |
Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $137$ | 137.8.7.6 | $x^{8} + 3699$ | $8$ | $1$ | $7$ | $C_8$ | $[\ ]_{8}$ |
| 401 | Data not computed | ||||||