Normalized defining polynomial
\( x^{8} - x^{7} + 3776 x^{6} + 494294 x^{5} + 8856821 x^{4} - 157684537 x^{3} + 1210437730 x^{2} + 389550534756 x + 9368076387816 \)
Invariants
| Degree: | $8$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 4]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(149382277861584434817625637593=157^{6}\cdot 193^{7}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $4433.92$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $157, 193$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois and abelian over $\Q$. | |||
| Conductor: | \(30301=157\cdot 193\) | ||
| Dirichlet character group: | not computed | ||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $\frac{1}{2} a^{2} - \frac{1}{2} a$, $\frac{1}{12} a^{3} + \frac{5}{12} a - \frac{1}{2}$, $\frac{1}{72} a^{4} - \frac{1}{36} a^{3} - \frac{1}{72} a^{2} + \frac{13}{36} a + \frac{1}{3}$, $\frac{1}{576} a^{5} - \frac{1}{192} a^{4} - \frac{5}{576} a^{3} + \frac{7}{64} a^{2} - \frac{35}{144} a - \frac{17}{48}$, $\frac{1}{3456} a^{6} - \frac{7}{1728} a^{4} - \frac{1}{24} a^{3} + \frac{49}{3456} a^{2} + \frac{1}{24} a - \frac{1}{96}$, $\frac{1}{17185333862073987852481152} a^{7} - \frac{53451556875200628503}{4296333465518496963120288} a^{6} - \frac{2717782461722926296037}{8592666931036993926240576} a^{5} + \frac{4830975762249311663599}{4296333465518496963120288} a^{4} + \frac{519958713965298691886365}{17185333862073987852481152} a^{3} - \frac{4864445167900038219349}{537041683189812120390036} a^{2} - \frac{86247351995987704300759}{1432111155172832321040096} a - \frac{3243011285073370276576}{14917824533050336677501}$
Class group and class number
$C_{2}\times C_{2}\times C_{41987908}$, which has order $167951632$ (assuming GRH)
Unit group
| Rank: | $3$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 3013737.4052 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A cyclic group of order 8 |
| The 8 conjugacy class representatives for $C_8$ |
| Character table for $C_8$ |
Intermediate fields
| \(\Q(\sqrt{193}) \), 4.4.177203065993.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.1.0.1}{1} }^{8}$ | ${\href{/LocalNumberField/3.1.0.1}{1} }^{8}$ | ${\href{/LocalNumberField/5.8.0.1}{8} }$ | ${\href{/LocalNumberField/7.4.0.1}{4} }^{2}$ | ${\href{/LocalNumberField/11.8.0.1}{8} }$ | ${\href{/LocalNumberField/13.8.0.1}{8} }$ | ${\href{/LocalNumberField/17.8.0.1}{8} }$ | ${\href{/LocalNumberField/19.8.0.1}{8} }$ | ${\href{/LocalNumberField/23.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/29.8.0.1}{8} }$ | ${\href{/LocalNumberField/31.4.0.1}{4} }^{2}$ | ${\href{/LocalNumberField/37.8.0.1}{8} }$ | ${\href{/LocalNumberField/41.8.0.1}{8} }$ | ${\href{/LocalNumberField/43.4.0.1}{4} }^{2}$ | ${\href{/LocalNumberField/47.8.0.1}{8} }$ | ${\href{/LocalNumberField/53.8.0.1}{8} }$ | ${\href{/LocalNumberField/59.4.0.1}{4} }^{2}$ |
Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $157$ | 157.4.3.1 | $x^{4} - 157$ | $4$ | $1$ | $3$ | $C_4$ | $[\ ]_{4}$ |
| 157.4.3.1 | $x^{4} - 157$ | $4$ | $1$ | $3$ | $C_4$ | $[\ ]_{4}$ | |
| $193$ | 193.8.7.3 | $x^{8} - 120625$ | $8$ | $1$ | $7$ | $C_8$ | $[\ ]_{8}$ |