Normalized defining polynomial
\( x^{8} - 4 x^{6} + 2 x^{4} + 13 \)
Invariants
| Degree: | $8$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 4]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(1406080000=2^{10}\cdot 5^{4}\cdot 13^{3}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $13.92$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 5, 13$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $\frac{1}{2} a^{4} - \frac{1}{2}$, $\frac{1}{4} a^{5} - \frac{1}{4} a^{4} - \frac{1}{2} a^{2} + \frac{1}{4} a + \frac{1}{4}$, $\frac{1}{4} a^{6} - \frac{1}{4} a^{4} - \frac{1}{2} a^{3} - \frac{1}{4} a^{2} - \frac{1}{2} a + \frac{1}{4}$, $\frac{1}{4} a^{7} - \frac{1}{4} a^{4} - \frac{1}{4} a^{3} - \frac{1}{2} a - \frac{1}{4}$
Class group and class number
Trivial group, which has order $1$
Unit group
| Rank: | $3$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | \( \frac{1}{4} a^{6} + \frac{1}{4} a^{5} - \frac{1}{2} a^{4} - \frac{1}{2} a^{3} + \frac{1}{4} a^{2} - \frac{1}{4} a - \frac{3}{2} \), \( \frac{1}{4} a^{7} - \frac{1}{2} a^{6} - \frac{1}{4} a^{5} + a^{4} - \frac{5}{4} a^{3} + a^{2} - \frac{3}{4} a + \frac{3}{2} \), \( \frac{1}{2} a^{4} - 3 a^{2} + \frac{9}{2} \) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 65.2516884581 \) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_2^3:A_4:C_2$ (as 8T40):
| A solvable group of order 192 |
| The 13 conjugacy class representatives for $Q_8:S_4$ |
| Character table for $Q_8:S_4$ |
Intermediate fields
| 4.0.5200.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 8 sibling: | data not computed |
| Degree 16 siblings: | data not computed |
| Degree 24 siblings: | data not computed |
| Degree 32 siblings: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/LocalNumberField/3.3.0.1}{3} }^{2}{,}\,{\href{/LocalNumberField/3.1.0.1}{1} }^{2}$ | R | ${\href{/LocalNumberField/7.8.0.1}{8} }$ | ${\href{/LocalNumberField/11.4.0.1}{4} }{,}\,{\href{/LocalNumberField/11.2.0.1}{2} }^{2}$ | R | ${\href{/LocalNumberField/17.4.0.1}{4} }^{2}$ | ${\href{/LocalNumberField/19.2.0.1}{2} }^{3}{,}\,{\href{/LocalNumberField/19.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/23.6.0.1}{6} }{,}\,{\href{/LocalNumberField/23.2.0.1}{2} }$ | ${\href{/LocalNumberField/29.3.0.1}{3} }^{2}{,}\,{\href{/LocalNumberField/29.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/31.8.0.1}{8} }$ | ${\href{/LocalNumberField/37.8.0.1}{8} }$ | ${\href{/LocalNumberField/41.8.0.1}{8} }$ | ${\href{/LocalNumberField/43.3.0.1}{3} }^{2}{,}\,{\href{/LocalNumberField/43.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/47.2.0.1}{2} }^{3}{,}\,{\href{/LocalNumberField/47.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/53.6.0.1}{6} }{,}\,{\href{/LocalNumberField/53.2.0.1}{2} }$ | ${\href{/LocalNumberField/59.8.0.1}{8} }$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.8.10.3 | $x^{8} + 4 x^{2} + 20$ | $8$ | $1$ | $10$ | $\textrm{GL(2,3)}$ | $[4/3, 4/3, 3/2]_{3}^{2}$ |
| $5$ | 5.2.0.1 | $x^{2} - x + 2$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ |
| 5.3.2.1 | $x^{3} - 5$ | $3$ | $1$ | $2$ | $S_3$ | $[\ ]_{3}^{2}$ | |
| 5.3.2.1 | $x^{3} - 5$ | $3$ | $1$ | $2$ | $S_3$ | $[\ ]_{3}^{2}$ | |
| $13$ | 13.4.3.4 | $x^{4} + 104$ | $4$ | $1$ | $3$ | $C_4$ | $[\ ]_{4}$ |
| 13.4.0.1 | $x^{4} + x^{2} - x + 2$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ |
Artin representations
| Label | Dimension | Conductor | Defining polynomial of Artin field | $G$ | Ind | $\chi(c)$ | |
|---|---|---|---|---|---|---|---|
| * | 1.1.1t1.1c1 | $1$ | $1$ | $x$ | $C_1$ | $1$ | $1$ |
| 1.13.2t1.1c1 | $1$ | $ 13 $ | $x^{2} - x - 3$ | $C_2$ (as 2T1) | $1$ | $1$ | |
| 2.2e2_5e2_13.3t2.2c1 | $2$ | $ 2^{2} \cdot 5^{2} \cdot 13 $ | $x^{3} - 10 x - 10$ | $S_3$ (as 3T2) | $1$ | $2$ | |
| 3.2e4_5e2_13e2.6t8.1c1 | $3$ | $ 2^{4} \cdot 5^{2} \cdot 13^{2}$ | $x^{4} + 4 x^{2} - 2 x + 2$ | $S_4$ (as 4T5) | $1$ | $-1$ | |
| 3.2e2_5e2_13e3.4t5.1c1 | $3$ | $ 2^{2} \cdot 5^{2} \cdot 13^{3}$ | $x^{4} - 2 x^{3} + 8 x^{2} + 6 x + 35$ | $S_4$ (as 4T5) | $1$ | $-1$ | |
| 3.2e4_5e2_13e2.6t8.2c1 | $3$ | $ 2^{4} \cdot 5^{2} \cdot 13^{2}$ | $x^{4} + 26 x^{2} - 26 x + 117$ | $S_4$ (as 4T5) | $1$ | $-1$ | |
| 3.2e4_5e2_13e3.4t5.2c1 | $3$ | $ 2^{4} \cdot 5^{2} \cdot 13^{3}$ | $x^{4} + 26 x^{2} - 26 x + 117$ | $S_4$ (as 4T5) | $1$ | $-1$ | |
| 3.2e2_5e2_13e2.6t8.1c1 | $3$ | $ 2^{2} \cdot 5^{2} \cdot 13^{2}$ | $x^{4} - 2 x^{3} + 8 x^{2} + 6 x + 35$ | $S_4$ (as 4T5) | $1$ | $-1$ | |
| * | 3.2e4_5e2_13.4t5.1c1 | $3$ | $ 2^{4} \cdot 5^{2} \cdot 13 $ | $x^{4} + 4 x^{2} - 2 x + 2$ | $S_4$ (as 4T5) | $1$ | $-1$ |
| 4.2e6_5e2_13e4.8t40.1c1 | $4$ | $ 2^{6} \cdot 5^{2} \cdot 13^{4}$ | $x^{8} - 4 x^{6} + 2 x^{4} + 13$ | $Q_8:S_4$ (as 8T40) | $1$ | $0$ | |
| * | 4.2e6_5e2_13e2.8t40.1c1 | $4$ | $ 2^{6} \cdot 5^{2} \cdot 13^{2}$ | $x^{8} - 4 x^{6} + 2 x^{4} + 13$ | $Q_8:S_4$ (as 8T40) | $1$ | $0$ |
| 6.2e8_5e4_13e5.8t34.1c1 | $6$ | $ 2^{8} \cdot 5^{4} \cdot 13^{5}$ | $x^{8} - 4 x^{7} + 14 x^{5} - 49 x^{4} + 18 x^{3} + 20 x + 27$ | $V_4^2:S_3$ (as 8T34) | $1$ | $2$ | |
| 8.2e12_5e6_13e6.24t332.1c1 | $8$ | $ 2^{12} \cdot 5^{6} \cdot 13^{6}$ | $x^{8} - 4 x^{6} + 2 x^{4} + 13$ | $Q_8:S_4$ (as 8T40) | $1$ | $0$ |