Properties

Label 8.0.13807566031360000.4
Degree $8$
Signature $[0, 4]$
Discriminant $2^{12}\cdot 5^{4}\cdot 271^{4}$
Root discriminant $104.12$
Ramified primes $2, 5, 271$
Class number $144$ (GRH)
Class group $[12, 12]$ (GRH)
Galois group $D_4$ (as 8T4)

Related objects

Downloads

Learn more about

Show commands for: Magma / SageMath / Pari/GP

magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![5605, 8240, -3934, -8740, 4691, -388, 134, -4, 1]);
 
sage: x = polygen(QQ); K.<a> = NumberField(x^8 - 4*x^7 + 134*x^6 - 388*x^5 + 4691*x^4 - 8740*x^3 - 3934*x^2 + 8240*x + 5605)
 
gp: K = bnfinit(x^8 - 4*x^7 + 134*x^6 - 388*x^5 + 4691*x^4 - 8740*x^3 - 3934*x^2 + 8240*x + 5605, 1)
 

Normalized defining polynomial

\( x^{8} - 4 x^{7} + 134 x^{6} - 388 x^{5} + 4691 x^{4} - 8740 x^{3} - 3934 x^{2} + 8240 x + 5605 \)

magma: DefiningPolynomial(K);
 
sage: K.defining_polynomial()
 
gp: K.pol
 

Invariants

Degree:  $8$
magma: Degree(K);
 
sage: K.degree()
 
gp: poldegree(K.pol)
 
Signature:  $[0, 4]$
magma: Signature(K);
 
sage: K.signature()
 
gp: K.sign
 
Discriminant:  \(13807566031360000=2^{12}\cdot 5^{4}\cdot 271^{4}\)
magma: Discriminant(Integers(K));
 
sage: K.disc()
 
gp: K.disc
 
Root discriminant:  $104.12$
magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
 
sage: (K.disc().abs())^(1./K.degree())
 
gp: abs(K.disc)^(1/poldegree(K.pol))
 
Ramified primes:  $2, 5, 271$
magma: PrimeDivisors(Discriminant(Integers(K)));
 
sage: K.disc().support()
 
gp: factor(abs(K.disc))[,1]~
 
This field is Galois over $\Q$.
This is a CM field.

Integral basis (with respect to field generator \(a\))

$1$, $a$, $a^{2}$, $a^{3}$, $\frac{1}{2} a^{4} - \frac{1}{2} a^{2} - \frac{1}{2}$, $\frac{1}{2} a^{5} - \frac{1}{2} a^{3} - \frac{1}{2} a$, $\frac{1}{100420} a^{6} - \frac{3}{100420} a^{5} - \frac{11249}{50210} a^{4} + \frac{45001}{100420} a^{3} + \frac{13767}{50210} a^{2} - \frac{10007}{20084} a - \frac{2951}{20084}$, $\frac{1}{28619700} a^{7} + \frac{139}{28619700} a^{6} - \frac{1492657}{14309850} a^{5} - \frac{579733}{5723940} a^{4} + \frac{120923}{14309850} a^{3} + \frac{5717563}{28619700} a^{2} + \frac{287605}{1144788} a - \frac{33922}{75315}$

magma: IntegralBasis(K);
 
sage: K.integral_basis()
 
gp: K.zk
 

Class group and class number

$C_{12}\times C_{12}$, which has order $144$ (assuming GRH)

magma: ClassGroup(K);
 
sage: K.class_group().invariants()
 
gp: K.clgp
 

Unit group

magma: UK, f := UnitGroup(K);
 
sage: UK = K.unit_group()
 
Rank:  $3$
magma: UnitRank(K);
 
sage: UK.rank()
 
gp: K.fu
 
Torsion generator:  \( -1 \) (order $2$)
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
 
sage: UK.torsion_generator()
 
gp: K.tu[2]
 
Fundamental units:  Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH)
magma: [K!f(g): g in Generators(UK)];
 
sage: UK.fundamental_units()
 
gp: K.fu
 
Regulator:  \( 1522.19682492 \) (assuming GRH)
magma: Regulator(K);
 
sage: K.regulator()
 
gp: K.reg
 

Galois group

$D_4$ (as 8T4):

magma: GaloisGroup(K);
 
sage: K.galois_group(type='pari')
 
gp: polgalois(K.pol)
 
A solvable group of order 8
The 5 conjugacy class representatives for $D_4$
Character table for $D_4$

Intermediate fields

\(\Q(\sqrt{1355}) \), \(\Q(\sqrt{5}) \), \(\Q(\sqrt{271}) \), \(\Q(\sqrt{5}, \sqrt{271})\), 4.0.108400.1 x2, 4.0.23501120.1 x2

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Sibling fields

Degree 4 siblings: data not computed

Frobenius cycle types

$p$ 2 3 5 7 11 13 17 19 23 29 31 37 41 43 47 53 59
Cycle type R ${\href{/LocalNumberField/3.2.0.1}{2} }^{4}$ R ${\href{/LocalNumberField/7.4.0.1}{4} }^{2}$ ${\href{/LocalNumberField/11.2.0.1}{2} }^{4}$ ${\href{/LocalNumberField/13.4.0.1}{4} }^{2}$ ${\href{/LocalNumberField/17.2.0.1}{2} }^{4}$ ${\href{/LocalNumberField/19.1.0.1}{1} }^{8}$ ${\href{/LocalNumberField/23.2.0.1}{2} }^{4}$ ${\href{/LocalNumberField/29.2.0.1}{2} }^{4}$ ${\href{/LocalNumberField/31.2.0.1}{2} }^{4}$ ${\href{/LocalNumberField/37.2.0.1}{2} }^{4}$ ${\href{/LocalNumberField/41.1.0.1}{1} }^{8}$ ${\href{/LocalNumberField/43.2.0.1}{2} }^{4}$ ${\href{/LocalNumberField/47.2.0.1}{2} }^{4}$ ${\href{/LocalNumberField/53.2.0.1}{2} }^{4}$ ${\href{/LocalNumberField/59.1.0.1}{1} }^{8}$

In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.

magma: p := 7; // to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
magma: idealfactors := Factorization(p*Integers(K)); // get the data
 
magma: [<primefactor[2], Valuation(Norm(primefactor[1]), p)> : primefactor in idealfactors];
 
sage: p = 7; # to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
sage: [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]
 
gp: p = 7; \\ to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
gp: idealfactors = idealprimedec(K, p); \\ get the data
 
gp: vector(length(idealfactors), j, [idealfactors[j][3], idealfactors[j][4]])
 

Local algebras for ramified primes

$p$LabelPolynomial $e$ $f$ $c$ Galois group Slope content
$2$2.8.12.13$x^{8} + 12 x^{4} + 16$$4$$2$$12$$D_4$$[2, 2]^{2}$
$5$5.2.1.1$x^{2} - 5$$2$$1$$1$$C_2$$[\ ]_{2}$
5.2.1.1$x^{2} - 5$$2$$1$$1$$C_2$$[\ ]_{2}$
5.2.1.1$x^{2} - 5$$2$$1$$1$$C_2$$[\ ]_{2}$
5.2.1.1$x^{2} - 5$$2$$1$$1$$C_2$$[\ ]_{2}$
271Data not computed