Normalized defining polynomial
sage: x = polygen(QQ); K.<a> = NumberField(x^8 - x^7 + x^6 - 2*x^5 + 3*x^4 - 4*x^3 + 4*x^2 - 2*x + 1)
gp: K = bnfinit(x^8 - x^7 + x^6 - 2*x^5 + 3*x^4 - 4*x^3 + 4*x^2 - 2*x + 1, 1)
magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![1, -2, 4, -4, 3, -2, 1, -1, 1]);
\( x^{8} - x^{7} + x^{6} - 2 x^{5} + 3 x^{4} - 4 x^{3} + 4 x^{2} - 2 x + 1 \)
sage: K.defining_polynomial()
gp: K.pol
magma: DefiningPolynomial(K);
Invariants
Degree: | $8$ | sage: K.degree()
gp: poldegree(K.pol)
magma: Degree(K);
| |
Signature: | $[0, 4]$ | sage: K.signature()
gp: K.sign
magma: Signature(K);
| |
Discriminant: | \(1327833\)\(\medspace = 3^{4}\cdot 13^{2}\cdot 97\) | sage: K.disc()
gp: K.disc
magma: Discriminant(Integers(K));
| |
Root discriminant: | $5.83$ | sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
| |
Ramified primes: | $3, 13, 97$ | sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
magma: PrimeDivisors(Discriminant(Integers(K)));
| |
$|\Aut(K/\Q)|$: | $2$ | ||
This field is not Galois over $\Q$. | |||
This is not a CM field. |
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$
sage: K.integral_basis()
gp: K.zk
magma: IntegralBasis(K);
Class group and class number
Trivial group, which has order $1$
sage: K.class_group().invariants()
gp: K.clgp
magma: ClassGroup(K);
Unit group
sage: UK = K.unit_group()
magma: UK, f := UnitGroup(K);
Rank: | $3$ | sage: UK.rank()
gp: K.fu
magma: UnitRank(K);
| |
Torsion generator: | \( 2 a^{7} - 2 a^{6} + a^{5} - 3 a^{4} + 6 a^{3} - 6 a^{2} + 5 a - 1 \) (order $6$) | sage: UK.torsion_generator()
gp: K.tu[2]
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
| |
Fundamental units: | \( a^{6} - a^{5} - 2 a^{3} + 3 a^{2} - 3 a + 2 \), \( a^{7} - 2 a^{4} + a^{3} - a^{2} + a + 1 \), \( a^{7} - a^{6} - 2 a^{4} + 3 a^{3} - 2 a^{2} + 2 a - 1 \) | sage: UK.fundamental_units()
gp: K.fu
magma: [K!f(g): g in Generators(UK)];
| |
Regulator: | \( 0.963083858701 \) | sage: K.regulator()
gp: K.reg
magma: Regulator(K);
|
Class number formula
Galois group
$D_4^2.C_2$ (as 8T35):
sage: K.galois_group(type='pari')
gp: polgalois(K.pol)
magma: GaloisGroup(K);
A solvable group of order 128 |
The 20 conjugacy class representatives for $C_2 \wr C_2\wr C_2$ |
Character table for $C_2 \wr C_2\wr C_2$ |
Intermediate fields
\(\Q(\sqrt{-3}) \), 4.0.117.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Degree 8 siblings: | data not computed |
Degree 16 siblings: | data not computed |
Degree 32 siblings: | data not computed |
Frobenius cycle types
$p$ | $2$ | $3$ | $5$ | $7$ | $11$ | $13$ | $17$ | $19$ | $23$ | $29$ | $31$ | $37$ | $41$ | $43$ | $47$ | $53$ | $59$ |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Cycle type | ${\href{/LocalNumberField/2.4.0.1}{4} }^{2}$ | R | ${\href{/LocalNumberField/5.8.0.1}{8} }$ | ${\href{/LocalNumberField/7.4.0.1}{4} }{,}\,{\href{/LocalNumberField/7.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/11.4.0.1}{4} }^{2}$ | R | ${\href{/LocalNumberField/17.4.0.1}{4} }{,}\,{\href{/LocalNumberField/17.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/19.2.0.1}{2} }^{3}{,}\,{\href{/LocalNumberField/19.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/23.4.0.1}{4} }{,}\,{\href{/LocalNumberField/23.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/29.4.0.1}{4} }{,}\,{\href{/LocalNumberField/29.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/31.4.0.1}{4} }{,}\,{\href{/LocalNumberField/31.2.0.1}{2} }{,}\,{\href{/LocalNumberField/31.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/37.2.0.1}{2} }^{3}{,}\,{\href{/LocalNumberField/37.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/41.8.0.1}{8} }$ | ${\href{/LocalNumberField/43.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/43.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/47.4.0.1}{4} }^{2}$ | ${\href{/LocalNumberField/53.4.0.1}{4} }^{2}$ | ${\href{/LocalNumberField/59.8.0.1}{8} }$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
sage: p = 7; # to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
sage: [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]
gp: p = 7; \\ to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
gp: idealfactors = idealprimedec(K, p); \\ get the data
gp: vector(length(idealfactors), j, [idealfactors[j][3], idealfactors[j][4]])
magma: p := 7; // to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
magma: idealfactors := Factorization(p*Integers(K)); // get the data
magma: [<primefactor[2], Valuation(Norm(primefactor[1]), p)> : primefactor in idealfactors];
Local algebras for ramified primes
$p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
---|---|---|---|---|---|---|---|
$3$ | 3.8.4.1 | $x^{8} + 36 x^{4} - 27 x^{2} + 324$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $[\ ]_{2}^{4}$ |
$13$ | 13.4.0.1 | $x^{4} + x^{2} - x + 2$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ |
13.4.2.1 | $x^{4} + 39 x^{2} + 676$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
97 | Data not computed |
Artin representations
Label | Dimension | Conductor | Artin stem field | $G$ | Ind | $\chi(c)$ | |
---|---|---|---|---|---|---|---|
* | 1.1.1t1.a.a | $1$ | $1$ | \(\Q\) | $C_1$ | $1$ | $1$ |
1.291.2t1.a.a | $1$ | $ 3 \cdot 97 $ | \(\Q(\sqrt{-291}) \) | $C_2$ (as 2T1) | $1$ | $-1$ | |
1.97.2t1.a.a | $1$ | $ 97 $ | \(\Q(\sqrt{97}) \) | $C_2$ (as 2T1) | $1$ | $1$ | |
* | 1.3.2t1.a.a | $1$ | $ 3 $ | \(\Q(\sqrt{-3}) \) | $C_2$ (as 2T1) | $1$ | $-1$ |
1.3783.2t1.a.a | $1$ | $ 3 \cdot 13 \cdot 97 $ | \(\Q(\sqrt{-3783}) \) | $C_2$ (as 2T1) | $1$ | $-1$ | |
1.13.2t1.a.a | $1$ | $ 13 $ | \(\Q(\sqrt{13}) \) | $C_2$ (as 2T1) | $1$ | $1$ | |
1.39.2t1.a.a | $1$ | $ 3 \cdot 13 $ | \(\Q(\sqrt{-39}) \) | $C_2$ (as 2T1) | $1$ | $-1$ | |
1.1261.2t1.a.a | $1$ | $ 13 \cdot 97 $ | \(\Q(\sqrt{1261}) \) | $C_2$ (as 2T1) | $1$ | $1$ | |
2.3783.4t3.b.a | $2$ | $ 3 \cdot 13 \cdot 97 $ | 4.0.11349.1 | $D_{4}$ (as 4T3) | $1$ | $0$ | |
2.3783.4t3.a.a | $2$ | $ 3 \cdot 13 \cdot 97 $ | 4.0.11349.2 | $D_{4}$ (as 4T3) | $1$ | $0$ | |
* | 2.39.4t3.a.a | $2$ | $ 3 \cdot 13 $ | 4.0.117.1 | $D_{4}$ (as 4T3) | $1$ | $0$ |
2.366951.4t3.a.a | $2$ | $ 3 \cdot 13 \cdot 97^{2}$ | 4.0.1100853.1 | $D_{4}$ (as 4T3) | $1$ | $0$ | |
2.49179.4t3.b.a | $2$ | $ 3 \cdot 13^{2} \cdot 97 $ | 4.0.147537.1 | $D_{4}$ (as 4T3) | $1$ | $0$ | |
2.291.4t3.c.a | $2$ | $ 3 \cdot 97 $ | 4.0.873.1 | $D_{4}$ (as 4T3) | $1$ | $0$ | |
4.42933267.8t29.c.a | $4$ | $ 3^{3} \cdot 13^{2} \cdot 97^{2}$ | 8.0.1211877327609.4 | $(((C_4 \times C_2): C_2):C_2):C_2$ (as 8T29) | $1$ | $-2$ | |
4.1917981.8t35.b.a | $4$ | $ 3^{2} \cdot 13^{3} \cdot 97 $ | 8.0.1327833.1 | $C_2 \wr C_2\wr C_2$ (as 8T35) | $1$ | $0$ | |
4.106782741.8t35.b.a | $4$ | $ 3^{2} \cdot 13 \cdot 97^{3}$ | 8.0.1327833.1 | $C_2 \wr C_2\wr C_2$ (as 8T35) | $1$ | $0$ | |
4.4770363.8t29.c.a | $4$ | $ 3 \cdot 13^{2} \cdot 97^{2}$ | 8.0.1211877327609.4 | $(((C_4 \times C_2): C_2):C_2):C_2$ (as 8T29) | $1$ | $2$ | |
4.18046283229.8t35.b.a | $4$ | $ 3^{2} \cdot 13^{3} \cdot 97^{3}$ | 8.0.1327833.1 | $C_2 \wr C_2\wr C_2$ (as 8T35) | $1$ | $0$ | |
* | 4.11349.8t35.b.a | $4$ | $ 3^{2} \cdot 13 \cdot 97 $ | 8.0.1327833.1 | $C_2 \wr C_2\wr C_2$ (as 8T35) | $1$ | $0$ |
Data is given for all irreducible
representations of the Galois group for the Galois closure
of this field. Those marked with * are summands in the
permutation representation coming from this field. Representations
which appear with multiplicity greater than one are indicated
by exponents on the *.