Properties

Label 8.0.1305015625.1
Degree $8$
Signature $[0, 4]$
Discriminant $5^{6}\cdot 17^{4}$
Root discriminant $13.79$
Ramified primes $5, 17$
Class number $1$
Class group Trivial
Galois group $C_4\times C_2$ (as 8T2)

Related objects

Downloads

Learn more about

Show commands for: Magma / SageMath / Pari/GP

magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![256, 64, 80, 36, 29, -9, 5, -1, 1]);
 
sage: x = polygen(QQ); K.<a> = NumberField(x^8 - x^7 + 5*x^6 - 9*x^5 + 29*x^4 + 36*x^3 + 80*x^2 + 64*x + 256)
 
gp: K = bnfinit(x^8 - x^7 + 5*x^6 - 9*x^5 + 29*x^4 + 36*x^3 + 80*x^2 + 64*x + 256, 1)
 

Normalized defining polynomial

\( x^{8} - x^{7} + 5 x^{6} - 9 x^{5} + 29 x^{4} + 36 x^{3} + 80 x^{2} + 64 x + 256 \)

magma: DefiningPolynomial(K);
 
sage: K.defining_polynomial()
 
gp: K.pol
 

Invariants

Degree:  $8$
magma: Degree(K);
 
sage: K.degree()
 
gp: poldegree(K.pol)
 
Signature:  $[0, 4]$
magma: Signature(K);
 
sage: K.signature()
 
gp: K.sign
 
Discriminant:  \(1305015625=5^{6}\cdot 17^{4}\)
magma: Discriminant(Integers(K));
 
sage: K.disc()
 
gp: K.disc
 
Root discriminant:  $13.79$
magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
 
sage: (K.disc().abs())^(1./K.degree())
 
gp: abs(K.disc)^(1/poldegree(K.pol))
 
Ramified primes:  $5, 17$
magma: PrimeDivisors(Discriminant(Integers(K)));
 
sage: K.disc().support()
 
gp: factor(abs(K.disc))[,1]~
 
This field is Galois and abelian over $\Q$.
Conductor:  \(85=5\cdot 17\)
Dirichlet character group:    $\lbrace$$\chi_{85}(1,·)$, $\chi_{85}(67,·)$, $\chi_{85}(69,·)$, $\chi_{85}(33,·)$, $\chi_{85}(16,·)$, $\chi_{85}(18,·)$, $\chi_{85}(52,·)$, $\chi_{85}(84,·)$$\rbrace$
This is a CM field.

Integral basis (with respect to field generator \(a\))

$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $\frac{1}{116} a^{5} - \frac{1}{4} a^{4} + \frac{1}{4} a^{3} - \frac{1}{4} a^{2} + \frac{1}{4} a + \frac{9}{29}$, $\frac{1}{464} a^{6} - \frac{1}{464} a^{5} - \frac{7}{16} a^{4} + \frac{3}{16} a^{3} + \frac{1}{16} a^{2} + \frac{9}{116} a + \frac{5}{29}$, $\frac{1}{1856} a^{7} - \frac{1}{1856} a^{6} + \frac{5}{1856} a^{5} - \frac{29}{64} a^{4} + \frac{1}{64} a^{3} + \frac{9}{464} a^{2} + \frac{5}{116} a + \frac{1}{29}$

magma: IntegralBasis(K);
 
sage: K.integral_basis()
 
gp: K.zk
 

Class group and class number

Trivial group, which has order $1$

magma: ClassGroup(K);
 
sage: K.class_group().invariants()
 
gp: K.clgp
 

Unit group

magma: UK, f := UnitGroup(K);
 
sage: UK = K.unit_group()
 
Rank:  $3$
magma: UnitRank(K);
 
sage: UK.rank()
 
gp: K.fu
 
Torsion generator:  \( -\frac{5}{1856} a^{7} + \frac{25}{1856} a^{6} - \frac{45}{1856} a^{5} + \frac{5}{64} a^{4} - \frac{9}{64} a^{3} + \frac{25}{116} a^{2} + \frac{5}{29} a + \frac{20}{29} \) (order $10$)
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
 
sage: UK.torsion_generator()
 
gp: K.tu[2]
 
Fundamental units:  \( \frac{1}{116} a^{6} + \frac{65}{116} a + 1 \),  \( \frac{5}{928} a^{7} - \frac{19}{928} a^{6} + \frac{63}{928} a^{5} - \frac{7}{32} a^{4} + \frac{19}{32} a^{3} - \frac{461}{464} a^{2} + \frac{95}{58} a - \frac{56}{29} \),  \( \frac{7}{1856} a^{7} - \frac{11}{1856} a^{6} - \frac{9}{1856} a^{5} + \frac{1}{64} a^{4} + \frac{11}{64} a^{3} - \frac{41}{232} a^{2} + \frac{55}{116} a + \frac{4}{29} \)
magma: [K!f(g): g in Generators(UK)];
 
sage: UK.fundamental_units()
 
gp: K.fu
 
Regulator:  \( 35.6323756756 \)
magma: Regulator(K);
 
sage: K.regulator()
 
gp: K.reg
 

Galois group

$C_2\times C_4$ (as 8T2):

magma: GaloisGroup(K);
 
sage: K.galois_group(type='pari')
 
gp: polgalois(K.pol)
 
An abelian group of order 8
The 8 conjugacy class representatives for $C_4\times C_2$
Character table for $C_4\times C_2$

Intermediate fields

\(\Q(\sqrt{85}) \), \(\Q(\sqrt{5}) \), \(\Q(\sqrt{17}) \), \(\Q(\sqrt{5}, \sqrt{17})\), \(\Q(\zeta_{5})\), 4.0.36125.1

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Frobenius cycle types

$p$ 2 3 5 7 11 13 17 19 23 29 31 37 41 43 47 53 59
Cycle type ${\href{/LocalNumberField/2.4.0.1}{4} }^{2}$ ${\href{/LocalNumberField/3.4.0.1}{4} }^{2}$ R ${\href{/LocalNumberField/7.4.0.1}{4} }^{2}$ ${\href{/LocalNumberField/11.2.0.1}{2} }^{4}$ ${\href{/LocalNumberField/13.4.0.1}{4} }^{2}$ R ${\href{/LocalNumberField/19.2.0.1}{2} }^{4}$ ${\href{/LocalNumberField/23.4.0.1}{4} }^{2}$ ${\href{/LocalNumberField/29.2.0.1}{2} }^{4}$ ${\href{/LocalNumberField/31.2.0.1}{2} }^{4}$ ${\href{/LocalNumberField/37.4.0.1}{4} }^{2}$ ${\href{/LocalNumberField/41.2.0.1}{2} }^{4}$ ${\href{/LocalNumberField/43.4.0.1}{4} }^{2}$ ${\href{/LocalNumberField/47.4.0.1}{4} }^{2}$ ${\href{/LocalNumberField/53.4.0.1}{4} }^{2}$ ${\href{/LocalNumberField/59.2.0.1}{2} }^{4}$

In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.

magma: p := 7; // to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
magma: idealfactors := Factorization(p*Integers(K)); // get the data
 
magma: [<primefactor[2], Valuation(Norm(primefactor[1]), p)> : primefactor in idealfactors];
 
sage: p = 7; # to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
sage: [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]
 
gp: p = 7; \\ to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
gp: idealfactors = idealprimedec(K, p); \\ get the data
 
gp: vector(length(idealfactors), j, [idealfactors[j][3], idealfactors[j][4]])
 

Local algebras for ramified primes

$p$LabelPolynomial $e$ $f$ $c$ Galois group Slope content
$5$5.8.6.1$x^{8} - 5 x^{4} + 400$$4$$2$$6$$C_4\times C_2$$[\ ]_{4}^{2}$
$17$17.8.4.1$x^{8} + 6358 x^{4} - 4913 x^{2} + 10106041$$2$$4$$4$$C_4\times C_2$$[\ ]_{2}^{4}$