Normalized defining polynomial
\( x^{8} + 1872 x^{6} + 1095120 x^{4} + 205006464 x^{2} + 12198981601 \)
Invariants
| Degree: | $8$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 4]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(12932374110536728576=2^{24}\cdot 937^{4}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $244.88$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 937$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois and abelian over $\Q$. | |||
| Conductor: | \(14992=2^{4}\cdot 937\) | ||
| Dirichlet character group: | $\lbrace$$\chi_{14992}(1,·)$, $\chi_{14992}(3747,·)$, $\chi_{14992}(3749,·)$, $\chi_{14992}(7495,·)$, $\chi_{14992}(7497,·)$, $\chi_{14992}(11243,·)$, $\chi_{14992}(11245,·)$, $\chi_{14992}(14991,·)$$\rbrace$ | ||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $\frac{1}{469} a^{4} - \frac{2}{469} a^{2} - \frac{234}{469}$, $\frac{1}{51800581} a^{5} - \frac{219494}{51800581} a^{3} + \frac{769395}{51800581} a$, $\frac{1}{51800581} a^{6} + \frac{1404}{51800581} a^{4} + \frac{327599}{51800581} a^{2} + \frac{1}{469}$, $\frac{1}{51800581} a^{7} - \frac{329473}{7400083} a^{3} + \frac{7692070}{51800581} a$
Class group and class number
$C_{10}\times C_{14000}$, which has order $140000$ (assuming GRH)
Unit group
| Rank: | $3$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | \( \frac{1}{51800581} a^{6} + \frac{1404}{51800581} a^{4} + \frac{327599}{51800581} a^{2} + \frac{1}{469} \), \( \frac{235}{51800581} a^{5} + \frac{219491}{51800581} a^{3} + \frac{25406082}{51800581} a - 1 \), \( \frac{1}{51800581} a^{7} + \frac{234}{7400083} a^{5} + \frac{109512}{7400083} a^{3} + \frac{76547717}{51800581} a - 1 \) (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 19.534360053 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_2\times C_4$ (as 8T2):
| An abelian group of order 8 |
| The 8 conjugacy class representatives for $C_4\times C_2$ |
| Character table for $C_4\times C_2$ |
Intermediate fields
| \(\Q(\sqrt{-937}) \), \(\Q(\sqrt{2}) \), \(\Q(\sqrt{-1874}) \), \(\Q(\sqrt{2}, \sqrt{-937})\), 4.0.1798080512.5, \(\Q(\zeta_{16})^+\) |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/LocalNumberField/3.4.0.1}{4} }^{2}$ | ${\href{/LocalNumberField/5.4.0.1}{4} }^{2}$ | ${\href{/LocalNumberField/7.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/11.4.0.1}{4} }^{2}$ | ${\href{/LocalNumberField/13.4.0.1}{4} }^{2}$ | ${\href{/LocalNumberField/17.1.0.1}{1} }^{8}$ | ${\href{/LocalNumberField/19.4.0.1}{4} }^{2}$ | ${\href{/LocalNumberField/23.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/29.4.0.1}{4} }^{2}$ | ${\href{/LocalNumberField/31.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/37.4.0.1}{4} }^{2}$ | ${\href{/LocalNumberField/41.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/43.4.0.1}{4} }^{2}$ | ${\href{/LocalNumberField/47.1.0.1}{1} }^{8}$ | ${\href{/LocalNumberField/53.4.0.1}{4} }^{2}$ | ${\href{/LocalNumberField/59.4.0.1}{4} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.8.24.10 | $x^{8} + 16$ | $8$ | $1$ | $24$ | $C_4\times C_2$ | $[2, 3, 4]$ |
| 937 | Data not computed | ||||||