Properties

Label 8.0.129323741105...576.30
Degree $8$
Signature $[0, 4]$
Discriminant $2^{24}\cdot 937^{4}$
Root discriminant $244.88$
Ramified primes $2, 937$
Class number $140000$ (GRH)
Class group $[10, 14000]$ (GRH)
Galois group $C_4\times C_2$ (as 8T2)

Related objects

Downloads

Learn more about

Show commands for: Magma / SageMath / Pari/GP

magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![12198981601, 0, 205006464, 0, 1095120, 0, 1872, 0, 1]);
 
sage: x = polygen(QQ); K.<a> = NumberField(x^8 + 1872*x^6 + 1095120*x^4 + 205006464*x^2 + 12198981601)
 
gp: K = bnfinit(x^8 + 1872*x^6 + 1095120*x^4 + 205006464*x^2 + 12198981601, 1)
 

Normalized defining polynomial

\( x^{8} + 1872 x^{6} + 1095120 x^{4} + 205006464 x^{2} + 12198981601 \)

magma: DefiningPolynomial(K);
 
sage: K.defining_polynomial()
 
gp: K.pol
 

Invariants

Degree:  $8$
magma: Degree(K);
 
sage: K.degree()
 
gp: poldegree(K.pol)
 
Signature:  $[0, 4]$
magma: Signature(K);
 
sage: K.signature()
 
gp: K.sign
 
Discriminant:  \(12932374110536728576=2^{24}\cdot 937^{4}\)
magma: Discriminant(Integers(K));
 
sage: K.disc()
 
gp: K.disc
 
Root discriminant:  $244.88$
magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
 
sage: (K.disc().abs())^(1./K.degree())
 
gp: abs(K.disc)^(1/poldegree(K.pol))
 
Ramified primes:  $2, 937$
magma: PrimeDivisors(Discriminant(Integers(K)));
 
sage: K.disc().support()
 
gp: factor(abs(K.disc))[,1]~
 
This field is Galois and abelian over $\Q$.
Conductor:  \(14992=2^{4}\cdot 937\)
Dirichlet character group:    $\lbrace$$\chi_{14992}(1,·)$, $\chi_{14992}(3747,·)$, $\chi_{14992}(3749,·)$, $\chi_{14992}(7495,·)$, $\chi_{14992}(7497,·)$, $\chi_{14992}(11243,·)$, $\chi_{14992}(11245,·)$, $\chi_{14992}(14991,·)$$\rbrace$
This is a CM field.

Integral basis (with respect to field generator \(a\))

$1$, $a$, $a^{2}$, $a^{3}$, $\frac{1}{469} a^{4} - \frac{2}{469} a^{2} - \frac{234}{469}$, $\frac{1}{51800581} a^{5} - \frac{219494}{51800581} a^{3} + \frac{769395}{51800581} a$, $\frac{1}{51800581} a^{6} + \frac{1404}{51800581} a^{4} + \frac{327599}{51800581} a^{2} + \frac{1}{469}$, $\frac{1}{51800581} a^{7} - \frac{329473}{7400083} a^{3} + \frac{7692070}{51800581} a$

magma: IntegralBasis(K);
 
sage: K.integral_basis()
 
gp: K.zk
 

Class group and class number

$C_{10}\times C_{14000}$, which has order $140000$ (assuming GRH)

magma: ClassGroup(K);
 
sage: K.class_group().invariants()
 
gp: K.clgp
 

Unit group

magma: UK, f := UnitGroup(K);
 
sage: UK = K.unit_group()
 
Rank:  $3$
magma: UnitRank(K);
 
sage: UK.rank()
 
gp: K.fu
 
Torsion generator:  \( -1 \) (order $2$)
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
 
sage: UK.torsion_generator()
 
gp: K.tu[2]
 
Fundamental units:  \( \frac{1}{51800581} a^{6} + \frac{1404}{51800581} a^{4} + \frac{327599}{51800581} a^{2} + \frac{1}{469} \),  \( \frac{235}{51800581} a^{5} + \frac{219491}{51800581} a^{3} + \frac{25406082}{51800581} a - 1 \),  \( \frac{1}{51800581} a^{7} + \frac{234}{7400083} a^{5} + \frac{109512}{7400083} a^{3} + \frac{76547717}{51800581} a - 1 \) (assuming GRH)
magma: [K!f(g): g in Generators(UK)];
 
sage: UK.fundamental_units()
 
gp: K.fu
 
Regulator:  \( 19.534360053 \) (assuming GRH)
magma: Regulator(K);
 
sage: K.regulator()
 
gp: K.reg
 

Galois group

$C_2\times C_4$ (as 8T2):

magma: GaloisGroup(K);
 
sage: K.galois_group(type='pari')
 
gp: polgalois(K.pol)
 
An abelian group of order 8
The 8 conjugacy class representatives for $C_4\times C_2$
Character table for $C_4\times C_2$

Intermediate fields

\(\Q(\sqrt{-937}) \), \(\Q(\sqrt{2}) \), \(\Q(\sqrt{-1874}) \), \(\Q(\sqrt{2}, \sqrt{-937})\), 4.0.1798080512.5, \(\Q(\zeta_{16})^+\)

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Frobenius cycle types

$p$ 2 3 5 7 11 13 17 19 23 29 31 37 41 43 47 53 59
Cycle type R ${\href{/LocalNumberField/3.4.0.1}{4} }^{2}$ ${\href{/LocalNumberField/5.4.0.1}{4} }^{2}$ ${\href{/LocalNumberField/7.2.0.1}{2} }^{4}$ ${\href{/LocalNumberField/11.4.0.1}{4} }^{2}$ ${\href{/LocalNumberField/13.4.0.1}{4} }^{2}$ ${\href{/LocalNumberField/17.1.0.1}{1} }^{8}$ ${\href{/LocalNumberField/19.4.0.1}{4} }^{2}$ ${\href{/LocalNumberField/23.2.0.1}{2} }^{4}$ ${\href{/LocalNumberField/29.4.0.1}{4} }^{2}$ ${\href{/LocalNumberField/31.2.0.1}{2} }^{4}$ ${\href{/LocalNumberField/37.4.0.1}{4} }^{2}$ ${\href{/LocalNumberField/41.2.0.1}{2} }^{4}$ ${\href{/LocalNumberField/43.4.0.1}{4} }^{2}$ ${\href{/LocalNumberField/47.1.0.1}{1} }^{8}$ ${\href{/LocalNumberField/53.4.0.1}{4} }^{2}$ ${\href{/LocalNumberField/59.4.0.1}{4} }^{2}$

In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.

magma: p := 7; // to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
magma: idealfactors := Factorization(p*Integers(K)); // get the data
 
magma: [<primefactor[2], Valuation(Norm(primefactor[1]), p)> : primefactor in idealfactors];
 
sage: p = 7; # to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
sage: [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]
 
gp: p = 7; \\ to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
gp: idealfactors = idealprimedec(K, p); \\ get the data
 
gp: vector(length(idealfactors), j, [idealfactors[j][3], idealfactors[j][4]])
 

Local algebras for ramified primes

$p$LabelPolynomial $e$ $f$ $c$ Galois group Slope content
$2$2.8.24.10$x^{8} + 16$$8$$1$$24$$C_4\times C_2$$[2, 3, 4]$
937Data not computed