Normalized defining polynomial
\( x^{8} - 8 x^{6} + 18 x^{4} + 25 \)
Invariants
| Degree: | $8$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 4]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(11698585600=2^{14}\cdot 5^{2}\cdot 13^{4}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $18.13$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 5, 13$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $\frac{1}{4} a^{4} - \frac{1}{2} a^{3} - \frac{1}{2} a^{2} - \frac{1}{2} a - \frac{1}{4}$, $\frac{1}{4} a^{5} - \frac{1}{2} a^{3} - \frac{1}{2} a^{2} - \frac{1}{4} a - \frac{1}{2}$, $\frac{1}{20} a^{6} + \frac{1}{10} a^{4} - \frac{1}{2} a^{3} + \frac{3}{20} a^{2} - \frac{1}{2} a$, $\frac{1}{40} a^{7} - \frac{1}{40} a^{6} - \frac{3}{40} a^{5} + \frac{3}{40} a^{4} - \frac{7}{40} a^{3} - \frac{13}{40} a^{2} + \frac{1}{8} a + \frac{3}{8}$
Class group and class number
$C_{2}$, which has order $2$
Unit group
| Rank: | $3$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | \( \frac{1}{20} a^{7} - \frac{2}{5} a^{5} + \frac{23}{20} a^{3} - \frac{1}{2} a^{2} - \frac{1}{2} a + \frac{3}{2} \), \( \frac{1}{8} a^{7} - \frac{1}{40} a^{6} - \frac{9}{8} a^{5} + \frac{13}{40} a^{4} + \frac{25}{8} a^{3} - \frac{53}{40} a^{2} - \frac{9}{8} a + \frac{13}{8} \), \( \frac{3}{40} a^{7} + \frac{1}{8} a^{6} + \frac{1}{40} a^{5} + \frac{1}{8} a^{4} - \frac{41}{40} a^{3} - \frac{7}{8} a^{2} + \frac{17}{8} a - \frac{23}{8} \) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 100.974661125 \) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_2^3:A_4$ (as 8T32):
| A solvable group of order 96 |
| The 11 conjugacy class representatives for $((C_2 \times D_4): C_2):C_3$ |
| Character table for $((C_2 \times D_4): C_2):C_3$ |
Intermediate fields
| 4.0.10816.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 8 siblings: | data not computed |
| Degree 24 siblings: | data not computed |
| Degree 32 sibling: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/LocalNumberField/3.3.0.1}{3} }^{2}{,}\,{\href{/LocalNumberField/3.1.0.1}{1} }^{2}$ | R | ${\href{/LocalNumberField/7.3.0.1}{3} }^{2}{,}\,{\href{/LocalNumberField/7.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/11.6.0.1}{6} }{,}\,{\href{/LocalNumberField/11.2.0.1}{2} }$ | R | ${\href{/LocalNumberField/17.6.0.1}{6} }{,}\,{\href{/LocalNumberField/17.2.0.1}{2} }$ | ${\href{/LocalNumberField/19.3.0.1}{3} }^{2}{,}\,{\href{/LocalNumberField/19.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/23.6.0.1}{6} }{,}\,{\href{/LocalNumberField/23.2.0.1}{2} }$ | ${\href{/LocalNumberField/29.6.0.1}{6} }{,}\,{\href{/LocalNumberField/29.2.0.1}{2} }$ | ${\href{/LocalNumberField/31.4.0.1}{4} }^{2}$ | ${\href{/LocalNumberField/37.6.0.1}{6} }{,}\,{\href{/LocalNumberField/37.2.0.1}{2} }$ | ${\href{/LocalNumberField/41.6.0.1}{6} }{,}\,{\href{/LocalNumberField/41.2.0.1}{2} }$ | ${\href{/LocalNumberField/43.6.0.1}{6} }{,}\,{\href{/LocalNumberField/43.2.0.1}{2} }$ | ${\href{/LocalNumberField/47.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/47.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/53.4.0.1}{4} }^{2}$ | ${\href{/LocalNumberField/59.3.0.1}{3} }^{2}{,}\,{\href{/LocalNumberField/59.1.0.1}{1} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.8.14.2 | $x^{8} + 2 x^{7} + 2$ | $8$ | $1$ | $14$ | $A_4\times C_2$ | $[2, 2, 2]^{3}$ |
| $5$ | 5.4.2.2 | $x^{4} - 5 x^{2} + 50$ | $2$ | $2$ | $2$ | $C_4$ | $[\ ]_{2}^{2}$ |
| 5.4.0.1 | $x^{4} + x^{2} - 2 x + 2$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ | |
| $13$ | $\Q_{13}$ | $x + 2$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ |
| $\Q_{13}$ | $x + 2$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| 13.3.2.2 | $x^{3} - 13$ | $3$ | $1$ | $2$ | $C_3$ | $[\ ]_{3}$ | |
| 13.3.2.2 | $x^{3} - 13$ | $3$ | $1$ | $2$ | $C_3$ | $[\ ]_{3}$ |
Artin representations
| Label | Dimension | Conductor | Defining polynomial of Artin field | $G$ | Ind | $\chi(c)$ | |
|---|---|---|---|---|---|---|---|
| * | 1.1.1t1.1c1 | $1$ | $1$ | $x$ | $C_1$ | $1$ | $1$ |
| 1.13.3t1.1c1 | $1$ | $ 13 $ | $x^{3} - x^{2} - 4 x - 1$ | $C_3$ (as 3T1) | $0$ | $1$ | |
| 1.13.3t1.1c2 | $1$ | $ 13 $ | $x^{3} - x^{2} - 4 x - 1$ | $C_3$ (as 3T1) | $0$ | $1$ | |
| 3.2e6_5e2_13e2.4t4.2c1 | $3$ | $ 2^{6} \cdot 5^{2} \cdot 13^{2}$ | $x^{4} - 2 x^{3} - 10 x^{2} + 6 x + 19$ | $A_4$ (as 4T4) | $1$ | $3$ | |
| 3.2e6_5e2_13e2.4t4.1c1 | $3$ | $ 2^{6} \cdot 5^{2} \cdot 13^{2}$ | $x^{4} - 2 x^{3} + 6 x^{2} + 10$ | $A_4$ (as 4T4) | $1$ | $-1$ | |
| 3.5e2_13e2.4t4.1c1 | $3$ | $ 5^{2} \cdot 13^{2}$ | $x^{4} - x^{3} - 3 x + 4$ | $A_4$ (as 4T4) | $1$ | $-1$ | |
| 3.2e6_5e2_13e2.4t4.3c1 | $3$ | $ 2^{6} \cdot 5^{2} \cdot 13^{2}$ | $x^{4} - 2 x^{3} + 2 x^{2} + 4 x + 54$ | $A_4$ (as 4T4) | $1$ | $-1$ | |
| * | 3.2e6_13e2.4t4.1c1 | $3$ | $ 2^{6} \cdot 13^{2}$ | $x^{4} - 2 x^{3} + 2 x^{2} + 4 x + 2$ | $A_4$ (as 4T4) | $1$ | $-1$ |
| * | 4.2e8_5e2_13e2.8t32.6c1 | $4$ | $ 2^{8} \cdot 5^{2} \cdot 13^{2}$ | $x^{8} - 8 x^{6} + 18 x^{4} + 25$ | $((C_2 \times D_4): C_2):C_3$ (as 8T32) | $1$ | $0$ |
| 4.2e8_5e2_13e3.24t97.6c1 | $4$ | $ 2^{8} \cdot 5^{2} \cdot 13^{3}$ | $x^{8} - 8 x^{6} + 18 x^{4} + 25$ | $((C_2 \times D_4): C_2):C_3$ (as 8T32) | $0$ | $0$ | |
| 4.2e8_5e2_13e3.24t97.6c2 | $4$ | $ 2^{8} \cdot 5^{2} \cdot 13^{3}$ | $x^{8} - 8 x^{6} + 18 x^{4} + 25$ | $((C_2 \times D_4): C_2):C_3$ (as 8T32) | $0$ | $0$ |