Normalized defining polynomial
\( x^{8} - x^{7} + 8906 x^{6} - 17846 x^{5} + 6158657 x^{4} + 13581975 x^{3} + 994620660 x^{2} + 2528561184 x + 40061107712 \)
Invariants
| Degree: | $8$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 4]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(1143687927954664699581929=89^{7}\cdot 401^{4}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $1016.92$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $89, 401$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois and abelian over $\Q$. | |||
| Conductor: | \(35689=89\cdot 401\) | ||
| Dirichlet character group: | not computed | ||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $\frac{1}{2} a^{2} - \frac{1}{2} a$, $\frac{1}{4} a^{3} - \frac{1}{4} a$, $\frac{1}{8} a^{4} - \frac{1}{8} a^{2}$, $\frac{1}{32} a^{5} + \frac{1}{32} a^{4} + \frac{3}{32} a^{3} - \frac{1}{32} a^{2} - \frac{1}{8} a$, $\frac{1}{32} a^{6} - \frac{1}{16} a^{4} - \frac{1}{8} a^{3} + \frac{1}{32} a^{2} + \frac{1}{8} a$, $\frac{1}{6210866352945144249296811008} a^{7} + \frac{11802038057306409300167361}{776358294118143031162101376} a^{6} - \frac{43078500382770056026983959}{3105433176472572124648405504} a^{5} - \frac{17867980715173827686382453}{1552716588236286062324202752} a^{4} + \frac{610574680633750918522895821}{6210866352945144249296811008} a^{3} + \frac{67119913048808901431747283}{1552716588236286062324202752} a^{2} + \frac{52583673226283795341702231}{194089573529535757790525344} a + \frac{384755311441742202852971}{12130598345595984861907834}$
Class group and class number
$C_{2}\times C_{2}\times C_{6}\times C_{593196}$, which has order $14236704$ (assuming GRH)
Unit group
| Rank: | $3$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 2970.52387144 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A cyclic group of order 8 |
| The 8 conjugacy class representatives for $C_8$ |
| Character table for $C_8$ |
Intermediate fields
| \(\Q(\sqrt{89}) \), 4.4.704969.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.1.0.1}{1} }^{8}$ | ${\href{/LocalNumberField/3.8.0.1}{8} }$ | ${\href{/LocalNumberField/5.4.0.1}{4} }^{2}$ | ${\href{/LocalNumberField/7.8.0.1}{8} }$ | ${\href{/LocalNumberField/11.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/13.8.0.1}{8} }$ | ${\href{/LocalNumberField/17.4.0.1}{4} }^{2}$ | ${\href{/LocalNumberField/19.8.0.1}{8} }$ | ${\href{/LocalNumberField/23.8.0.1}{8} }$ | ${\href{/LocalNumberField/29.8.0.1}{8} }$ | ${\href{/LocalNumberField/31.8.0.1}{8} }$ | ${\href{/LocalNumberField/37.8.0.1}{8} }$ | ${\href{/LocalNumberField/41.8.0.1}{8} }$ | ${\href{/LocalNumberField/43.8.0.1}{8} }$ | ${\href{/LocalNumberField/47.4.0.1}{4} }^{2}$ | ${\href{/LocalNumberField/53.4.0.1}{4} }^{2}$ | ${\href{/LocalNumberField/59.8.0.1}{8} }$ |
Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $89$ | 89.8.7.3 | $x^{8} - 7209$ | $8$ | $1$ | $7$ | $C_8$ | $[\ ]_{8}$ |
| 401 | Data not computed | ||||||