Normalized defining polynomial
\( x^{8} - 4 x^{7} + 54 x^{6} - 148 x^{5} + 647 x^{4} - 1052 x^{3} + 2390 x^{2} - 1888 x + 2285 \)
Invariants
| Degree: | $8$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 4]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(11264239538176=2^{12}\cdot 229^{4}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $42.80$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 229$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $\frac{1}{2} a^{4} - \frac{1}{2} a^{2} - \frac{1}{2}$, $\frac{1}{2} a^{5} - \frac{1}{2} a^{3} - \frac{1}{2} a$, $\frac{1}{916} a^{6} - \frac{3}{916} a^{5} + \frac{27}{229} a^{4} - \frac{211}{916} a^{3} - \frac{139}{458} a^{2} + \frac{383}{916} a + \frac{209}{916}$, $\frac{1}{2748} a^{7} + \frac{1}{2748} a^{6} + \frac{277}{1374} a^{5} - \frac{79}{916} a^{4} - \frac{166}{687} a^{3} - \frac{271}{2748} a^{2} - \frac{183}{916} a - \frac{269}{1374}$
Class group and class number
$C_{20}$, which has order $20$
Unit group
| Rank: | $3$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | \( \frac{7}{916} a^{6} - \frac{21}{916} a^{5} + \frac{149}{458} a^{4} - \frac{561}{916} a^{3} + \frac{315}{229} a^{2} - \frac{983}{916} a - \frac{827}{916} \), \( \frac{15}{458} a^{6} - \frac{45}{458} a^{5} + \frac{352}{229} a^{4} - \frac{1333}{458} a^{3} + \frac{2724}{229} a^{2} - \frac{4789}{458} a + \frac{8631}{458} \), \( \frac{9}{916} a^{6} - \frac{27}{916} a^{5} + \frac{257}{458} a^{4} - \frac{983}{916} a^{3} + \frac{1779}{229} a^{2} - \frac{6629}{916} a + \frac{22491}{916} \) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 89.2915123053 \) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_2\times S_4$ (as 8T24):
| A solvable group of order 48 |
| The 10 conjugacy class representatives for $S_4\times C_2$ |
| Character table for $S_4\times C_2$ |
Intermediate fields
| \(\Q(\sqrt{-229}) \), 4.4.14656.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 6 siblings: | data not computed |
| Degree 8 sibling: | data not computed |
| Degree 12 siblings: | data not computed |
| Degree 16 sibling: | data not computed |
| Degree 24 siblings: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/LocalNumberField/3.6.0.1}{6} }{,}\,{\href{/LocalNumberField/3.2.0.1}{2} }$ | ${\href{/LocalNumberField/5.3.0.1}{3} }^{2}{,}\,{\href{/LocalNumberField/5.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/7.4.0.1}{4} }^{2}$ | ${\href{/LocalNumberField/11.6.0.1}{6} }{,}\,{\href{/LocalNumberField/11.2.0.1}{2} }$ | ${\href{/LocalNumberField/13.4.0.1}{4} }^{2}$ | ${\href{/LocalNumberField/17.3.0.1}{3} }^{2}{,}\,{\href{/LocalNumberField/17.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/19.6.0.1}{6} }{,}\,{\href{/LocalNumberField/19.2.0.1}{2} }$ | ${\href{/LocalNumberField/23.4.0.1}{4} }^{2}$ | ${\href{/LocalNumberField/29.4.0.1}{4} }^{2}$ | ${\href{/LocalNumberField/31.4.0.1}{4} }^{2}$ | ${\href{/LocalNumberField/37.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/41.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/43.6.0.1}{6} }{,}\,{\href{/LocalNumberField/43.2.0.1}{2} }$ | ${\href{/LocalNumberField/47.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/47.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/53.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/59.4.0.1}{4} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.8.12.13 | $x^{8} + 12 x^{4} + 16$ | $4$ | $2$ | $12$ | $D_4$ | $[2, 2]^{2}$ |
| 229 | Data not computed | ||||||