Normalized defining polynomial
\( x^{8} - 3 x^{7} + 4 x^{6} - 4 x^{5} + 8 x^{4} + 16 x^{3} + 18 x^{2} + 28 x + 13 \)
Invariants
| Degree: | $8$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 4]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(1121513121=3^{4}\cdot 61^{4}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $13.53$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $3, 61$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $\frac{1}{3} a^{5} + \frac{1}{3} a^{3} - \frac{1}{3} a - \frac{1}{3}$, $\frac{1}{9} a^{6} - \frac{1}{9} a^{5} + \frac{1}{9} a^{4} - \frac{1}{9} a^{3} - \frac{4}{9} a^{2} + \frac{4}{9}$, $\frac{1}{27} a^{7} + \frac{1}{27} a^{6} - \frac{1}{27} a^{5} + \frac{1}{27} a^{4} + \frac{1}{9} a^{3} + \frac{10}{27} a^{2} + \frac{13}{27} a - \frac{1}{27}$
Class group and class number
Trivial group, which has order $1$
Unit group
| Rank: | $3$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( \frac{13}{27} a^{7} - \frac{50}{27} a^{6} + \frac{95}{27} a^{5} - \frac{131}{27} a^{4} + \frac{67}{9} a^{3} + \frac{58}{27} a^{2} + \frac{178}{27} a + \frac{257}{27} \) (order $6$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 63.6847948779 \) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_2\times A_4$ (as 8T13):
| A solvable group of order 24 |
| The 8 conjugacy class representatives for $A_4\times C_2$ |
| Character table for $A_4\times C_2$ |
Intermediate fields
| \(\Q(\sqrt{-3}) \), 4.4.33489.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Galois closure: | data not computed |
| Degree 6 sibling: | 6.0.41537523.1 |
| Degree 12 siblings: | Deg 12, Deg 12 |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.6.0.1}{6} }{,}\,{\href{/LocalNumberField/2.2.0.1}{2} }$ | R | ${\href{/LocalNumberField/5.6.0.1}{6} }{,}\,{\href{/LocalNumberField/5.2.0.1}{2} }$ | ${\href{/LocalNumberField/7.3.0.1}{3} }^{2}{,}\,{\href{/LocalNumberField/7.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/11.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/13.3.0.1}{3} }^{2}{,}\,{\href{/LocalNumberField/13.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/17.6.0.1}{6} }{,}\,{\href{/LocalNumberField/17.2.0.1}{2} }$ | ${\href{/LocalNumberField/19.3.0.1}{3} }^{2}{,}\,{\href{/LocalNumberField/19.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/23.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/29.6.0.1}{6} }{,}\,{\href{/LocalNumberField/29.2.0.1}{2} }$ | ${\href{/LocalNumberField/31.3.0.1}{3} }^{2}{,}\,{\href{/LocalNumberField/31.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/37.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/41.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/43.3.0.1}{3} }^{2}{,}\,{\href{/LocalNumberField/43.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/47.6.0.1}{6} }{,}\,{\href{/LocalNumberField/47.2.0.1}{2} }$ | ${\href{/LocalNumberField/53.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/59.6.0.1}{6} }{,}\,{\href{/LocalNumberField/59.2.0.1}{2} }$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $3$ | 3.4.2.1 | $x^{4} + 9 x^{2} + 36$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ |
| 3.4.2.1 | $x^{4} + 9 x^{2} + 36$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| $61$ | $\Q_{61}$ | $x + 2$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ |
| $\Q_{61}$ | $x + 2$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| 61.3.2.1 | $x^{3} - 61$ | $3$ | $1$ | $2$ | $C_3$ | $[\ ]_{3}$ | |
| 61.3.2.1 | $x^{3} - 61$ | $3$ | $1$ | $2$ | $C_3$ | $[\ ]_{3}$ |
Artin representations
| Label | Dimension | Conductor | Defining polynomial of Artin field | $G$ | Ind | $\chi(c)$ | |
|---|---|---|---|---|---|---|---|
| * | 1.1.1t1.1c1 | $1$ | $1$ | $x$ | $C_1$ | $1$ | $1$ |
| * | 1.3.2t1.1c1 | $1$ | $ 3 $ | $x^{2} - x + 1$ | $C_2$ (as 2T1) | $1$ | $-1$ |
| 1.61.3t1.1c1 | $1$ | $ 61 $ | $x^{3} - x^{2} - 20 x + 9$ | $C_3$ (as 3T1) | $0$ | $1$ | |
| 1.3_61.6t1.1c1 | $1$ | $ 3 \cdot 61 $ | $x^{6} - x^{5} + 21 x^{4} + 2 x^{3} + 409 x^{2} - 180 x + 81$ | $C_6$ (as 6T1) | $0$ | $-1$ | |
| 1.3_61.6t1.1c2 | $1$ | $ 3 \cdot 61 $ | $x^{6} - x^{5} + 21 x^{4} + 2 x^{3} + 409 x^{2} - 180 x + 81$ | $C_6$ (as 6T1) | $0$ | $-1$ | |
| 1.61.3t1.1c2 | $1$ | $ 61 $ | $x^{3} - x^{2} - 20 x + 9$ | $C_3$ (as 3T1) | $0$ | $1$ | |
| * | 3.3e2_61e2.4t4.1c1 | $3$ | $ 3^{2} \cdot 61^{2}$ | $x^{4} - 7 x^{2} - 3 x + 1$ | $A_4$ (as 4T4) | $1$ | $3$ |
| * | 3.3_61e2.6t6.2c1 | $3$ | $ 3 \cdot 61^{2}$ | $x^{8} - 3 x^{7} + 4 x^{6} - 4 x^{5} + 8 x^{4} + 16 x^{3} + 18 x^{2} + 28 x + 13$ | $A_4\times C_2$ (as 8T13) | $1$ | $-3$ |