Properties

Label 8.0.11209515625.1
Degree $8$
Signature $[0, 4]$
Discriminant $5^{6}\cdot 7^{2}\cdot 11^{4}$
Root discriminant $18.04$
Ramified primes $5, 7, 11$
Class number $4$
Class group $[4]$
Galois group $C_2^3 : C_4 $ (as 8T19)

Related objects

Downloads

Learn more about

Show commands for: Magma / SageMath / Pari/GP

magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![16, -14, -7, 10, -4, -5, 7, -3, 1]);
 
sage: x = polygen(QQ); K.<a> = NumberField(x^8 - 3*x^7 + 7*x^6 - 5*x^5 - 4*x^4 + 10*x^3 - 7*x^2 - 14*x + 16)
 
gp: K = bnfinit(x^8 - 3*x^7 + 7*x^6 - 5*x^5 - 4*x^4 + 10*x^3 - 7*x^2 - 14*x + 16, 1)
 

Normalized defining polynomial

\( x^{8} - 3 x^{7} + 7 x^{6} - 5 x^{5} - 4 x^{4} + 10 x^{3} - 7 x^{2} - 14 x + 16 \)

magma: DefiningPolynomial(K);
 
sage: K.defining_polynomial()
 
gp: K.pol
 

Invariants

Degree:  $8$
magma: Degree(K);
 
sage: K.degree()
 
gp: poldegree(K.pol)
 
Signature:  $[0, 4]$
magma: Signature(K);
 
sage: K.signature()
 
gp: K.sign
 
Discriminant:  \(11209515625=5^{6}\cdot 7^{2}\cdot 11^{4}\)
magma: Discriminant(Integers(K));
 
sage: K.disc()
 
gp: K.disc
 
Root discriminant:  $18.04$
magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
 
sage: (K.disc().abs())^(1./K.degree())
 
gp: abs(K.disc)^(1/poldegree(K.pol))
 
Ramified primes:  $5, 7, 11$
magma: PrimeDivisors(Discriminant(Integers(K)));
 
sage: K.disc().support()
 
gp: factor(abs(K.disc))[,1]~
 
This field is not Galois over $\Q$.
This is not a CM field.

Integral basis (with respect to field generator \(a\))

$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $\frac{1}{5} a^{6} + \frac{1}{5} a^{4} - \frac{2}{5} a^{3} - \frac{1}{5} a^{2} - \frac{1}{5} a + \frac{1}{5}$, $\frac{1}{10} a^{7} - \frac{1}{10} a^{6} + \frac{1}{10} a^{5} - \frac{3}{10} a^{4} - \frac{2}{5} a^{3} - \frac{3}{10} a + \frac{2}{5}$

magma: IntegralBasis(K);
 
sage: K.integral_basis()
 
gp: K.zk
 

Class group and class number

$C_{4}$, which has order $4$

magma: ClassGroup(K);
 
sage: K.class_group().invariants()
 
gp: K.clgp
 

Unit group

magma: UK, f := UnitGroup(K);
 
sage: UK = K.unit_group()
 
Rank:  $3$
magma: UnitRank(K);
 
sage: UK.rank()
 
gp: K.fu
 
Torsion generator:  \( -1 \) (order $2$)
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
 
sage: UK.torsion_generator()
 
gp: K.tu[2]
 
Fundamental units:  \( a - 1 \),  \( \frac{4}{5} a^{7} - \frac{7}{5} a^{6} + \frac{19}{5} a^{5} + a^{4} - 3 a^{3} + \frac{28}{5} a^{2} + \frac{1}{5} a - \frac{57}{5} \),  \( \frac{7}{5} a^{7} - \frac{11}{5} a^{6} + \frac{32}{5} a^{5} + a^{4} - 4 a^{3} + \frac{39}{5} a^{2} - \frac{2}{5} a - \frac{91}{5} \)
magma: [K!f(g): g in Generators(UK)];
 
sage: UK.fundamental_units()
 
gp: K.fu
 
Regulator:  \( 73.1797759177 \)
magma: Regulator(K);
 
sage: K.regulator()
 
gp: K.reg
 

Galois group

$C_2^2.D_4$ (as 8T19):

magma: GaloisGroup(K);
 
sage: K.galois_group(type='pari')
 
gp: polgalois(K.pol)
 
A solvable group of order 32
The 11 conjugacy class representatives for $C_2^3 : C_4 $
Character table for $C_2^3 : C_4 $

Intermediate fields

\(\Q(\sqrt{-55}) \), 4.0.15125.1

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Sibling fields

Galois closure: data not computed
Degree 8 siblings: data not computed
Degree 16 siblings: data not computed

Frobenius cycle types

$p$ 2 3 5 7 11 13 17 19 23 29 31 37 41 43 47 53 59
Cycle type ${\href{/LocalNumberField/2.4.0.1}{4} }{,}\,{\href{/LocalNumberField/2.2.0.1}{2} }{,}\,{\href{/LocalNumberField/2.1.0.1}{1} }^{2}$ ${\href{/LocalNumberField/3.4.0.1}{4} }^{2}$ R R R ${\href{/LocalNumberField/13.4.0.1}{4} }{,}\,{\href{/LocalNumberField/13.2.0.1}{2} }{,}\,{\href{/LocalNumberField/13.1.0.1}{1} }^{2}$ ${\href{/LocalNumberField/17.4.0.1}{4} }{,}\,{\href{/LocalNumberField/17.2.0.1}{2} }{,}\,{\href{/LocalNumberField/17.1.0.1}{1} }^{2}$ ${\href{/LocalNumberField/19.2.0.1}{2} }^{4}$ ${\href{/LocalNumberField/23.4.0.1}{4} }^{2}$ ${\href{/LocalNumberField/29.4.0.1}{4} }^{2}$ ${\href{/LocalNumberField/31.2.0.1}{2} }^{4}$ ${\href{/LocalNumberField/37.4.0.1}{4} }^{2}$ ${\href{/LocalNumberField/41.4.0.1}{4} }^{2}$ ${\href{/LocalNumberField/43.4.0.1}{4} }{,}\,{\href{/LocalNumberField/43.2.0.1}{2} }{,}\,{\href{/LocalNumberField/43.1.0.1}{1} }^{2}$ ${\href{/LocalNumberField/47.4.0.1}{4} }^{2}$ ${\href{/LocalNumberField/53.4.0.1}{4} }^{2}$ ${\href{/LocalNumberField/59.2.0.1}{2} }^{4}$

In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.

magma: p := 7; // to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
magma: idealfactors := Factorization(p*Integers(K)); // get the data
 
magma: [<primefactor[2], Valuation(Norm(primefactor[1]), p)> : primefactor in idealfactors];
 
sage: p = 7; # to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
sage: [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]
 
gp: p = 7; \\ to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
gp: idealfactors = idealprimedec(K, p); \\ get the data
 
gp: vector(length(idealfactors), j, [idealfactors[j][3], idealfactors[j][4]])
 

Local algebras for ramified primes

$p$LabelPolynomial $e$ $f$ $c$ Galois group Slope content
$5$5.4.3.1$x^{4} - 5$$4$$1$$3$$C_4$$[\ ]_{4}$
5.4.3.1$x^{4} - 5$$4$$1$$3$$C_4$$[\ ]_{4}$
$7$7.2.1.2$x^{2} + 14$$2$$1$$1$$C_2$$[\ ]_{2}$
7.2.1.1$x^{2} - 7$$2$$1$$1$$C_2$$[\ ]_{2}$
7.4.0.1$x^{4} + x^{2} - 3 x + 5$$1$$4$$0$$C_4$$[\ ]^{4}$
$11$11.4.2.1$x^{4} + 143 x^{2} + 5929$$2$$2$$2$$C_2^2$$[\ ]_{2}^{2}$
11.4.2.1$x^{4} + 143 x^{2} + 5929$$2$$2$$2$$C_2^2$$[\ ]_{2}^{2}$

Artin representations

Label Dimension Conductor Defining polynomial of Artin field $G$ Ind $\chi(c)$
* 1.1.1t1.1c1$1$ $1$ $x$ $C_1$ $1$ $1$
* 1.5_11.2t1.1c1$1$ $ 5 \cdot 11 $ $x^{2} - x + 14$ $C_2$ (as 2T1) $1$ $-1$
1.11.2t1.1c1$1$ $ 11 $ $x^{2} - x + 3$ $C_2$ (as 2T1) $1$ $-1$
1.5.2t1.1c1$1$ $ 5 $ $x^{2} - x - 1$ $C_2$ (as 2T1) $1$ $1$
1.5_7_11.4t1.1c1$1$ $ 5 \cdot 7 \cdot 11 $ $x^{4} - x^{3} + 96 x^{2} - 96 x + 1901$ $C_4$ (as 4T1) $0$ $-1$
1.5_7.4t1.1c1$1$ $ 5 \cdot 7 $ $x^{4} - x^{3} - 9 x^{2} + 9 x + 11$ $C_4$ (as 4T1) $0$ $1$
1.5_7.4t1.1c2$1$ $ 5 \cdot 7 $ $x^{4} - x^{3} - 9 x^{2} + 9 x + 11$ $C_4$ (as 4T1) $0$ $1$
1.5_7_11.4t1.1c2$1$ $ 5 \cdot 7 \cdot 11 $ $x^{4} - x^{3} + 96 x^{2} - 96 x + 1901$ $C_4$ (as 4T1) $0$ $-1$
* 2.5e2_11.4t3.2c1$2$ $ 5^{2} \cdot 11 $ $x^{4} - 2 x^{3} + 4 x^{2} - 3 x + 16$ $D_{4}$ (as 4T3) $1$ $0$
2.5_7e2_11.4t3.1c1$2$ $ 5 \cdot 7^{2} \cdot 11 $ $x^{4} - x^{3} - 2 x^{2} - 12 x - 31$ $D_{4}$ (as 4T3) $1$ $0$
* 4.5e3_7e2_11e2.8t21.2c1$4$ $ 5^{3} \cdot 7^{2} \cdot 11^{2}$ $x^{8} - 3 x^{7} + 7 x^{6} - 5 x^{5} - 4 x^{4} + 10 x^{3} - 7 x^{2} - 14 x + 16$ $C_2^3 : C_4 $ (as 8T19) $1$ $0$

Data is given for all irreducible representations of the Galois group for the Galois closure of this field. Those marked with * are summands in the permutation representation coming from this field. Representations which appear with multiplicity greater than one are indicated by exponents on the *.