Normalized defining polynomial
\( x^{8} - 2 x^{7} + 396 x^{6} - 790 x^{5} + 78231 x^{4} - 22120 x^{3} + 8567148 x^{2} + 5233648 x + 374827264 \)
Invariants
| Degree: | $8$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 4]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(109600545209715828752929=113^{6}\cdot 479^{4}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $758.54$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $113, 479$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois and abelian over $\Q$. | |||
| Conductor: | \(54127=113\cdot 479\) | ||
| Dirichlet character group: | not computed | ||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $\frac{1}{2} a^{2} - \frac{1}{2} a$, $\frac{1}{2} a^{3} - \frac{1}{2} a$, $\frac{1}{8} a^{4} - \frac{1}{4} a^{3} - \frac{1}{8} a^{2} + \frac{1}{4} a$, $\frac{1}{56} a^{5} - \frac{3}{56} a^{4} + \frac{13}{56} a^{3} - \frac{9}{56} a^{2} - \frac{13}{28} a$, $\frac{1}{448} a^{6} + \frac{1}{448} a^{5} - \frac{27}{448} a^{4} + \frac{15}{448} a^{3} + \frac{25}{224} a^{2} - \frac{13}{56} a$, $\frac{1}{7302980327552} a^{7} + \frac{140698811}{3651490163776} a^{6} - \frac{6117972267}{3651490163776} a^{5} + \frac{2957707339}{130410362992} a^{4} + \frac{773593699325}{7302980327552} a^{3} + \frac{325751688001}{3651490163776} a^{2} + \frac{43028879833}{130410362992} a + \frac{344715682}{1164378241}$
Class group and class number
$C_{10232775}$, which has order $10232775$ (assuming GRH)
Unit group
| Rank: | $3$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 5177.33507354 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_2\times C_4$ (as 8T2):
| An abelian group of order 8 |
| The 8 conjugacy class representatives for $C_4\times C_2$ |
| Character table for $C_4\times C_2$ |
Intermediate fields
| \(\Q(\sqrt{-54127}) \), \(\Q(\sqrt{113}) \), \(\Q(\sqrt{-479}) \), \(\Q(\sqrt{113}, \sqrt{-479})\), 4.0.331059730577.1, 4.4.1442897.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.1.0.1}{1} }^{8}$ | ${\href{/LocalNumberField/3.4.0.1}{4} }^{2}$ | ${\href{/LocalNumberField/5.4.0.1}{4} }^{2}$ | ${\href{/LocalNumberField/7.1.0.1}{1} }^{8}$ | ${\href{/LocalNumberField/11.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/13.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/17.4.0.1}{4} }^{2}$ | ${\href{/LocalNumberField/19.4.0.1}{4} }^{2}$ | ${\href{/LocalNumberField/23.4.0.1}{4} }^{2}$ | ${\href{/LocalNumberField/29.4.0.1}{4} }^{2}$ | ${\href{/LocalNumberField/31.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/37.4.0.1}{4} }^{2}$ | ${\href{/LocalNumberField/41.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/43.4.0.1}{4} }^{2}$ | ${\href{/LocalNumberField/47.4.0.1}{4} }^{2}$ | ${\href{/LocalNumberField/53.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/59.4.0.1}{4} }^{2}$ |
Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $113$ | 113.8.6.1 | $x^{8} - 18193 x^{4} + 127690000$ | $4$ | $2$ | $6$ | $C_4\times C_2$ | $[\ ]_{4}^{2}$ |
| 479 | Data not computed | ||||||