Normalized defining polynomial
\( x^{8} + 4x^{6} + 16x^{4} - 56x^{2} + 36 \)
Invariants
Degree: | $8$ | sage: K.degree()
gp: poldegree(K.pol)
magma: Degree(K);
oscar: degree(K)
| |
Signature: | $[0, 4]$ | sage: K.signature()
gp: K.sign
magma: Signature(K);
oscar: signature(K)
| |
Discriminant: | \(1024000000\) \(\medspace = 2^{16}\cdot 5^{6}\) | sage: K.disc()
gp: K.disc
magma: OK := Integers(K); Discriminant(OK);
oscar: OK = ring_of_integers(K); discriminant(OK)
| |
Root discriminant: | \(13.37\) | sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
magma: Abs(Discriminant(OK))^(1/Degree(K));
oscar: (1.0 * dK)^(1/degree(K))
| |
Galois root discriminant: | $2^{2}5^{3/4}\approx 13.37480609952844$ | ||
Ramified primes: | \(2\), \(5\) | sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
magma: PrimeDivisors(Discriminant(OK));
oscar: prime_divisors(discriminant((OK)))
| |
Discriminant root field: | \(\Q\) | ||
$\card{ \Gal(K/\Q) }$: | $8$ | sage: K.automorphisms()
magma: Automorphisms(K);
oscar: automorphisms(K)
| |
This field is Galois over $\Q$. | |||
This is not a CM field. |
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $\frac{1}{8}a^{4}+\frac{1}{4}a^{2}-\frac{1}{2}a-\frac{1}{4}$, $\frac{1}{8}a^{5}+\frac{1}{4}a^{3}-\frac{1}{2}a^{2}-\frac{1}{4}a$, $\frac{1}{8}a^{6}-\frac{1}{2}a^{3}+\frac{1}{4}a^{2}-\frac{1}{2}$, $\frac{1}{48}a^{7}-\frac{1}{24}a^{5}-\frac{1}{24}a^{3}-\frac{1}{2}a^{2}-\frac{1}{6}a-\frac{1}{2}$
Monogenic: | No | |
Index: | Not computed | |
Inessential primes: | $3$ |
Class group and class number
$C_{2}$, which has order $2$
Unit group
Rank: | $3$ | sage: UK.rank()
gp: K.fu
magma: UnitRank(K);
oscar: rank(UK)
| |
Torsion generator: | \( \frac{5}{24} a^{7} + \frac{13}{12} a^{5} + \frac{55}{12} a^{3} - \frac{20}{3} a \) (order $4$) | sage: UK.torsion_generator()
gp: K.tu[2]
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
oscar: torsion_units_generator(OK)
| |
Fundamental units: | $\frac{5}{48}a^{7}-\frac{1}{4}a^{6}+\frac{13}{24}a^{5}-\frac{5}{4}a^{4}+\frac{55}{24}a^{3}-\frac{11}{2}a^{2}-\frac{10}{3}a+8$, $\frac{19}{48}a^{7}+\frac{3}{8}a^{6}+\frac{47}{24}a^{5}+\frac{15}{8}a^{4}+\frac{197}{24}a^{3}+8a^{2}-\frac{85}{6}a-\frac{51}{4}$, $\frac{1}{48}a^{7}+\frac{1}{12}a^{5}-\frac{1}{8}a^{4}+\frac{5}{24}a^{3}-\frac{1}{4}a^{2}-\frac{11}{12}a-\frac{1}{4}$ | sage: UK.fundamental_units()
gp: K.fu
magma: [K|fUK(g): g in Generators(UK)];
oscar: [K(fUK(a)) for a in gens(UK)]
| |
Regulator: | \( 24.6646630038 \) | sage: K.regulator()
gp: K.reg
magma: Regulator(K);
oscar: regulator(K)
|
Class number formula
\[ \begin{aligned}\lim_{s\to 1} (s-1)\zeta_K(s) =\mathstrut & \frac{2^{r_1}\cdot (2\pi)^{r_2}\cdot R\cdot h}{w\cdot\sqrt{|D|}}\cr \approx\mathstrut &\frac{2^{0}\cdot(2\pi)^{4}\cdot 24.6646630038 \cdot 2}{4\cdot\sqrt{1024000000}}\cr\approx \mathstrut & 0.600640600965 \end{aligned}\]
Galois group
A solvable group of order 8 |
The 5 conjugacy class representatives for $D_4$ |
Character table for $D_4$ |
Intermediate fields
\(\Q(\sqrt{-1}) \), \(\Q(\sqrt{-5}) \), \(\Q(\sqrt{5}) \), \(\Q(i, \sqrt{5})\), 4.0.32000.1 x2, 4.2.8000.1 x2 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Degree 4 siblings: | 4.2.8000.1, 4.0.32000.1 |
Minimal sibling: | 4.2.8000.1 |
Frobenius cycle types
$p$ | $2$ | $3$ | $5$ | $7$ | $11$ | $13$ | $17$ | $19$ | $23$ | $29$ | $31$ | $37$ | $41$ | $43$ | $47$ | $53$ | $59$ |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Cycle type | R | ${\href{/padicField/3.2.0.1}{2} }^{4}$ | R | ${\href{/padicField/7.2.0.1}{2} }^{4}$ | ${\href{/padicField/11.2.0.1}{2} }^{4}$ | ${\href{/padicField/13.4.0.1}{4} }^{2}$ | ${\href{/padicField/17.4.0.1}{4} }^{2}$ | ${\href{/padicField/19.2.0.1}{2} }^{4}$ | ${\href{/padicField/23.2.0.1}{2} }^{4}$ | ${\href{/padicField/29.1.0.1}{1} }^{8}$ | ${\href{/padicField/31.2.0.1}{2} }^{4}$ | ${\href{/padicField/37.4.0.1}{4} }^{2}$ | ${\href{/padicField/41.2.0.1}{2} }^{4}$ | ${\href{/padicField/43.2.0.1}{2} }^{4}$ | ${\href{/padicField/47.2.0.1}{2} }^{4}$ | ${\href{/padicField/53.4.0.1}{4} }^{2}$ | ${\href{/padicField/59.2.0.1}{2} }^{4}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
$p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
---|---|---|---|---|---|---|---|
\(2\) | 2.8.16.5 | $x^{8} + 4 x^{7} + 14 x^{6} + 36 x^{5} + 73 x^{4} + 88 x^{3} + 48 x^{2} + 56 x + 61$ | $4$ | $2$ | $16$ | $D_4$ | $[2, 3]^{2}$ |
\(5\) | 5.4.3.2 | $x^{4} + 5$ | $4$ | $1$ | $3$ | $C_4$ | $[\ ]_{4}$ |
5.4.3.2 | $x^{4} + 5$ | $4$ | $1$ | $3$ | $C_4$ | $[\ ]_{4}$ |
Artin representations
Label | Dimension | Conductor | Artin stem field | $G$ | Ind | $\chi(c)$ | |
---|---|---|---|---|---|---|---|
* | 1.1.1t1.a.a | $1$ | $1$ | \(\Q\) | $C_1$ | $1$ | $1$ |
* | 1.5.2t1.a.a | $1$ | $ 5 $ | \(\Q(\sqrt{5}) \) | $C_2$ (as 2T1) | $1$ | $1$ |
* | 1.20.2t1.a.a | $1$ | $ 2^{2} \cdot 5 $ | \(\Q(\sqrt{-5}) \) | $C_2$ (as 2T1) | $1$ | $-1$ |
* | 1.4.2t1.a.a | $1$ | $ 2^{2}$ | \(\Q(\sqrt{-1}) \) | $C_2$ (as 2T1) | $1$ | $-1$ |
*2 | 2.1600.4t3.c.a | $2$ | $ 2^{6} \cdot 5^{2}$ | 8.0.1024000000.6 | $D_4$ (as 8T4) | $1$ | $0$ |