Normalized defining polynomial
\( x^{8} - x^{7} - 9 x^{6} + x^{5} + 19 x^{4} + 27 x^{3} + 53 x^{2} + 37 x + 19 \)
Invariants
| Degree: | $8$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 4]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(10144316961=3^{4}\cdot 19^{4}\cdot 31^{2}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $17.81$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $3, 19, 31$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $\frac{1}{3} a^{5} + \frac{1}{3} a + \frac{1}{3}$, $\frac{1}{3} a^{6} + \frac{1}{3} a^{2} + \frac{1}{3} a$, $\frac{1}{1659} a^{7} + \frac{5}{237} a^{6} + \frac{145}{1659} a^{5} - \frac{103}{553} a^{4} + \frac{508}{1659} a^{3} + \frac{22}{553} a^{2} - \frac{16}{79} a - \frac{446}{1659}$
Class group and class number
Trivial group, which has order $1$
Unit group
| Rank: | $3$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( \frac{5}{79} a^{7} - \frac{28}{237} a^{6} - \frac{116}{237} a^{5} + \frac{35}{79} a^{4} + \frac{91}{79} a^{3} + \frac{200}{237} a^{2} + \frac{137}{79} a + \frac{262}{237} \) (order $6$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 321.55900279 \) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_2^2\wr C_2:C_3$ (as 8T33):
| A solvable group of order 96 |
| The 10 conjugacy class representatives for $C_2^4:C_6$ |
| Character table for $C_2^4:C_6$ |
Intermediate fields
| \(\Q(\sqrt{-3}) \) |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 8 sibling: | data not computed |
| Degree 12 siblings: | data not computed |
| Degree 16 sibling: | data not computed |
| Degree 24 siblings: | data not computed |
| Degree 32 sibling: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.6.0.1}{6} }{,}\,{\href{/LocalNumberField/2.2.0.1}{2} }$ | R | ${\href{/LocalNumberField/5.6.0.1}{6} }{,}\,{\href{/LocalNumberField/5.2.0.1}{2} }$ | ${\href{/LocalNumberField/7.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/7.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/11.4.0.1}{4} }^{2}$ | ${\href{/LocalNumberField/13.3.0.1}{3} }^{2}{,}\,{\href{/LocalNumberField/13.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/17.6.0.1}{6} }{,}\,{\href{/LocalNumberField/17.2.0.1}{2} }$ | R | ${\href{/LocalNumberField/23.6.0.1}{6} }{,}\,{\href{/LocalNumberField/23.2.0.1}{2} }$ | ${\href{/LocalNumberField/29.6.0.1}{6} }{,}\,{\href{/LocalNumberField/29.2.0.1}{2} }$ | R | ${\href{/LocalNumberField/37.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/41.6.0.1}{6} }{,}\,{\href{/LocalNumberField/41.2.0.1}{2} }$ | ${\href{/LocalNumberField/43.3.0.1}{3} }^{2}{,}\,{\href{/LocalNumberField/43.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/47.6.0.1}{6} }{,}\,{\href{/LocalNumberField/47.2.0.1}{2} }$ | ${\href{/LocalNumberField/53.6.0.1}{6} }{,}\,{\href{/LocalNumberField/53.2.0.1}{2} }$ | ${\href{/LocalNumberField/59.6.0.1}{6} }{,}\,{\href{/LocalNumberField/59.2.0.1}{2} }$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $3$ | 3.2.1.2 | $x^{2} + 3$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ |
| 3.6.3.2 | $x^{6} - 9 x^{2} + 27$ | $2$ | $3$ | $3$ | $C_6$ | $[\ ]_{2}^{3}$ | |
| $19$ | $\Q_{19}$ | $x + 4$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ |
| $\Q_{19}$ | $x + 4$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| 19.3.2.2 | $x^{3} - 19$ | $3$ | $1$ | $2$ | $C_3$ | $[\ ]_{3}$ | |
| 19.3.2.2 | $x^{3} - 19$ | $3$ | $1$ | $2$ | $C_3$ | $[\ ]_{3}$ | |
| $31$ | 31.2.0.1 | $x^{2} - x + 12$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ |
| 31.2.0.1 | $x^{2} - x + 12$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 31.4.2.1 | $x^{4} + 713 x^{2} + 138384$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ |